Skip to main content
Log in

A mild oxidation strategy for oxidation-hydrolysis of cellulose without additional catalyst

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

O3 was applied as an efficient oxidant in the pre-oxidation of cellulose under the mild conditions for oxidation-hydrolysis of cellulose without additional catalyst. After treated by O3 at 120 °C for 4 h, some hydroxymethyl groups on cellulose structure were oxidized to carboxyl groups which act as the active sites for the hydrolysis under the hydrothermal conditions to break the glycoside bonds of cellulose. Much lower oxidation temperature and short treatment time make this method more competitive than the conventional oxidation-hydrolysis strategy (210 °C, 48 h) where O2 was used as the oxidant. Furthermore, in this oxidation-hydrolysis strategy, efficient hydrolysis of cellulose to glucose can be realized with a high cellulose/water mass ratio (40 wt%). Correspondingly, a glucose aqueous solution with high concentration (50.9 g L−1) can be obtained. High concentration of glucose is favorable for the further application in fermentation or chemical conversion. This work provides a new, mild, and green oxidation strategy for oxidation-hydrolysis of cellulose without additional catalyst.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

References

  1. Xu Y, Li M (2021) Hydrothermal liquefaction of lignocellulose for value-added products: mechanism, parameter and production application. Bioresour Technol 342:126035–126046. https://doi.org/10.1016/j.biortech.2021.126035

    Article  CAS  PubMed  Google Scholar 

  2. Raud M, Kikas T, Sippula O et al (2019) Potentials and challenges in lignocellulosic biofuel production technology. Renew Sust Energ Rev 111:44–56. https://doi.org/10.1016/j.rser.2019.05.020

    Article  CAS  Google Scholar 

  3. Duan Y, Wang R, Liu Q et al (2022) Tungsten promoted Ni/Al2O3 as a noble-metal-free catalyst for the conversion of 5-hydroxymethylfurfural to 1-hydroxy-2,5-hexanedione. Front Chem 10:857199. https://doi.org/10.3389/fchem.2022.857199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang H, Wang J, Si S et al (2021) Residual-lignin-endowed molded pulp lunchbox with a sustained wet support strength. Ind Crops Prod 170:113756. https://doi.org/10.1016/j.indcrop.2021.113756

    Article  CAS  Google Scholar 

  5. Wang J, Chen W, Dong T et al (2021) Enabled cellulose nanopaper with outstanding water stability and wet strength via activated residual lignin as a reinforcement. Green Chem 23:10062–10070. https://doi.org/10.1039/D1GC03906G

    Article  CAS  Google Scholar 

  6. Vaidya AA, Murton KD, Smith DA et al (2022) A review on organosolv pretreatment of softwood with a focus on enzymatic hydrolysis of cellulose. Biomass Conv Bioref. https://doi.org/10.1007/s13399-022-02373-9

    Article  Google Scholar 

  7. Li S, Deng W, Wang S et al (2018) Catalytic transformation of cellulose and its derivatives into functionalized organic acids. Chemsuschem 11:1995–2028. https://doi.org/10.1002/cssc.201800440

    Article  CAS  PubMed  Google Scholar 

  8. Luo Y, Zhu L, He Y et al (2021) Selective catalytic transformation of cellulose into bio-based cresol with CuCr2O4@MCM-41 catalyst. Cellulose 29:303–319. https://doi.org/10.1007/s10570-021-04285-9

    Article  CAS  Google Scholar 

  9. Wang J, Wang Q, Wu Y et al (2020) Preparation of cellulose nanofibers from bagasse by phosphoric acid and hydrogen peroxide enables fibrillation via a swelling, hydrolysis, and oxidation cooperative mechanism. Nanomaterials 10:2227. https://doi.org/10.3390/nano10112227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang J, Wu Y, Chen W et al (2022) Cellulose nanofibrils with a three-dimensional interpenetrating network structure for recycled paper enhancement. Cellulose 29:3773–3785. https://doi.org/10.1007/s10570-022-04496-8

    Article  CAS  Google Scholar 

  11. Fukuoka A, Dhepe PL (2006) Catalytic conversion of cellulose into sugar alcohols. Angew Chem Int Ed 45:5161–5163. https://doi.org/10.1002/anie.200601921

    Article  CAS  Google Scholar 

  12. Väisänen S, Kosonen H, Ristolainen M et al (2021) Cellulose dissolution in aqueous NaOH–ZnO: effect of pulp pretreatment at macro and molecular levels. Cellulose 28:4385–4396. https://doi.org/10.1007/s10570-021-03779-w

    Article  CAS  Google Scholar 

  13. Lee Y-C, Dutta S, Wu KC-W (2014) Integrated, cascading enzyme-/chemocatalytic cellulose conversion using catalysts based on mesoporous silica nanoparticles. Chemsuschem 7:3241–3246. https://doi.org/10.1002/cssc.201402605

    Article  CAS  PubMed  Google Scholar 

  14. Suzuki S, Takeoka Y, Rikukawa M et al (2018) Brønsted acidic ionic liquids for cellulose hydrolysis in an aqueous medium: structural effects on acidity and glucose yield. RSC Adv 8:14623–14632. https://doi.org/10.1039/C8RA01950A

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Liu X, Wu H, Jiao Z et al (2018) The degradation and saccharification of microcrystalline cellulose in aqueous acetone solution with low severity dilute sulfuric acid. Process Biochem 68:146–152. https://doi.org/10.1016/j.indcrop.2021.113540

    Article  CAS  Google Scholar 

  16. Levi N, Khenkin AM, Hailegnaw B et al (2016) Depolymerization of cellulose in water catalyzed by phenylboronic acid derivatives. ACS Sustainable Chem Eng 4:5799–5803. https://doi.org/10.1016/j.carbpol.2014.09.091

    Article  CAS  Google Scholar 

  17. Woodward RT, Kessler M, Lima S et al (2018) Hypercrosslinked microporous polymer sorbents for the efficient recycling of a soluble acid catalyst in cellulose hydrolysis. Green Chem 20:2374–2381. https://doi.org/10.1039/C8GC00573G

    Article  CAS  Google Scholar 

  18. Suganuma S, Nakajima K, Kitano M et al (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc 130:12787–12793. https://doi.org/10.1021/ja803983h

    Article  CAS  PubMed  Google Scholar 

  19. EB Sangib BT Meshesha BA Demessie et al 2020 Optimization of cellulose hydrolysis in the presence of biomass-derived sulfonated catalyst in microwave reactor using response surface methodology Biomass Conv Biorefhttps://doi.org/10.1007/s13399-020-00720-2

  20. Hua L, Lin L, Wu Z et al (2015) Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. Appl Catal B 174–175:225–243. https://doi.org/10.1016/j.apcatb.2015.03.003

    Article  CAS  Google Scholar 

  21. Tondro H, Zilouei H, Zargoosh K et al (2021) Nettle leaves-based sulfonated graphene oxide for efficient hydrolysis of microcrystalline cellulose. Fuel 284:118975. https://doi.org/10.1016/j.fuel.2020.118975

    Article  CAS  Google Scholar 

  22. Pengilly C, García-Aparicio M, Swart JPJ et al (2022) Micro-assay method for enzymatic saccharification of industrially relevant lignocellulose substrates. Biomass Convers Bior 12:299–311. https://doi.org/10.1007/s13399-020-00700-6

    Article  Google Scholar 

  23. Fan J, De Bruyn M, Budarin VL et al (2013) Direct microwave-assisted hydrothermal depolymerization of cellulose. J Am Chem Soc 135:11728–11731. https://doi.org/10.1021/ja4056273

    Article  CAS  PubMed  Google Scholar 

  24. Haouache S, Karam A, Chave T et al (2020) Selective radical depolymerization of cellulose to glucose induced by high frequency ultrasound. Chem Sci 11:2664–2669. https://doi.org/10.1039/D0SC00020E

    Article  PubMed  PubMed Central  Google Scholar 

  25. Benoit M, Rodrigues A, Zhang Q et al (2011) Depolymerization of cellulose assisted by a nonthermal atmospheric plasma. Angew Chem 123:9126–9129. https://doi.org/10.1002/anie.201104123

    Article  CAS  ADS  Google Scholar 

  26. Buendia-Kandia F, Brosse N, Petitjean D et al (2020) Hydrothermal conversion of wood, organosolv, and chlorite pulps. Biomass Convers Bior 10:1–13. https://doi.org/10.1007/s13399-019-00395-4

    Article  CAS  Google Scholar 

  27. Zhou L, Yang X, Xu J et al (2015) Depolymerization of cellulose to glucose by oxidation–hydrolysis. Green Chem 17:1519–1524. https://doi.org/10.1039/C4GC02151G

    Article  CAS  Google Scholar 

  28. Yang X, Wang B, Lu T et al (2020) Depolymerization of wheat straw to produce glucose by self-catalyzed hydrolysis. Energy Fuels 34:5990–5996. https://doi.org/10.1021/acs.energyfuels.0c00525

    Article  CAS  Google Scholar 

  29. Zhou L, Gao D, Ma Y et al (2021) Depolymerization of cellulose promoted by lignin via oxidation-hydrolysis route. Ind Crops Prod 174:114179–114185. https://doi.org/10.1016/j.indcrop.2021.114179

    Article  CAS  Google Scholar 

  30. Bugg TDH (2003) Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron 59:7075–7101. https://doi.org/10.1016/S0040-4020(03)00944-X

    Article  CAS  Google Scholar 

  31. Beltrán FJ, Rivas FJ, Montero-de-Espinosa R (2005) Iron type catalysts for the ozonation of oxalic acid in water. Water Res 39:3553–3564. https://doi.org/10.1016/j.watres.2005.06.018

    Article  CAS  PubMed  Google Scholar 

  32. Christine C, Dominique L (1997) Effect of hydroxyl radicals on cellulose and pulp and their occurrence during ozone bleaching. Holzforschung 51:147–154. https://doi.org/10.1515/hfsg.1997.51.2.147

    Article  Google Scholar 

  33. Mussatto SI (2016) Biomass fractionation technologies for a lignocellulosic feedstock based biorefinery. Elsevier, Amsterdam

    Google Scholar 

  34. Tripathi SK, Bhardwaj NK, Roy GH (2019) Developments in ozone-based bleaching of pulps. Ozone Sci Eng 42:194–210. https://doi.org/10.1080/01919512.2019.1647407

    Article  CAS  Google Scholar 

  35. Takao K, Fumiaki N (2018) Non-chlorine bleaching of kraft pulp. Holzforschung 52:185–190. https://doi.org/10.1515/hfsg.1998.52.2.180

    Article  Google Scholar 

  36. Pouyet F, Chirat C, Potthast A et al (2014) Formation of carbonyl groups on cellulose during ozone treatment of pulp: consequences for pulp bleaching. Carbohydr Polym 109:85–91. https://doi.org/10.1016/j.carbpol.2014.02.082

    Article  CAS  PubMed  Google Scholar 

  37. Lemeune S, Jameel H, Chang HM et al (2004) Effects of ozone and chlorine dioxide on the chemical properties of cellulose fibers. J Appl Polym Sci 93:1219–1223. https://doi.org/10.1002/app.20509

    Article  CAS  Google Scholar 

  38. Jiang F, Ma D, Bao X (2009) Acid ionic liquid catalyzed hydrolysis of cellulose. Chinese J Catal 30:279–283. https://doi.org/10.1002/adsc.200700259

    Article  CAS  Google Scholar 

  39. Segal L, Creely JJ, Martin AE et al (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Textile Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  40. French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index. Cellulose 20:583–588. https://doi.org/10.1007/s10570-012-9833-y

    Article  CAS  Google Scholar 

  41. Hu H, Bhowmik P, Zhao B et al (2001) Determination of the acidic sites of purified single-walled carbon nanotubes by acid-base titration. Chem Phys lett 345:25–28. https://doi.org/10.1016/S0009-2614(01)00851-X

    Article  CAS  ADS  Google Scholar 

  42. Saito T, Nishiyama Y, Putaux J-L et al (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7:1687–1691. https://doi.org/10.1021/bm060154s

    Article  CAS  Google Scholar 

  43. Guo X, Li H, Yan H et al (2020) Production of organic carboxylic acids by hydrothermal conversion of electron beam irradiation pretreated wheat straw. Biomass Convers Bior 10:997–1006. https://doi.org/10.1007/s13399-019-00471-9

    Article  CAS  Google Scholar 

  44. Okugawa A, Ishihara K, Taniguchi H et al (2020) In vivo decomposition of 13C-labeled cellulose in the mouse. Cellulose 27:2417–2426. https://doi.org/10.1007/s10570-020-02968-3

    Article  CAS  Google Scholar 

  45. Khan FN, Jayakumar R, Pillai CN (2003) Electrocatalytic oxidative cleavage by electrogenerated periodate. J Mol Catal A Chem 195:139–145. https://doi.org/10.1016/S1381-1169(02)00551-4

    Article  CAS  Google Scholar 

  46. Wang C, Yuan Z, Wang A et al (2019) Ultraviolet light enhanced sodium persulfate oxidation of cellulose to facilitate the preparation of cellulose nanofibers. Cellulose 27:2041–2051. https://doi.org/10.1007/s10570-019-02941-9

    Article  CAS  Google Scholar 

  47. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  48. Shakouri Z, Nazockdast H (2018) Microstructural development and mechanical performance of PLA/TPU blends containing geometrically different cellulose nanocrystals. Cellulose 25:7167–7188. https://doi.org/10.1007/s10570-018-2061-3

    Article  CAS  Google Scholar 

  49. Daza Serna LA, OrregoAlzate CE, Cardona Alzate CA (2016) Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour Technol 199:113–120. https://doi.org/10.3389/fbioe.2020.00252

    Article  CAS  PubMed  Google Scholar 

  50. Sun B, Peng G, Duan L, Xu A, Li X (2015) Pretreatment by NaOH swelling and then HCl regeneration to enhance the acid hydrolysis of cellulose to glucose. Bioresour Technol 196:454–458. https://doi.org/10.1016/j.biortech.2015.08.009

    Article  CAS  PubMed  Google Scholar 

  51. Hamzah A, Kumala PGE, Ramadhani D et al (2017) Effect of temperature and mixing speed on immobilization of crude enzyme from Aspergillus niger on chitosan for hydrolyzing cellulose. AIP Conf Proc 1840:030006. https://doi.org/10.1063/1.4982266

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Natural Science Foundation of China (21875222, 31801671).

Funding

The work was supported by the National Natural Science Foundation of China (21875222, 31801671).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Lipeng Zhou, Xiaolin Han, Yangyang Ma, and Tianliang Lu. The first draft of the manuscript was written by Lipeng Zhou, Xiaomei Yang, and Tianliang Lu, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tianliang Lu.

Ethics declarations

Ethics approval

No human participants and/or animals were involved in this research.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 767 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Han, X., Ma, Y. et al. A mild oxidation strategy for oxidation-hydrolysis of cellulose without additional catalyst. Biomass Conv. Bioref. 14, 7725–7733 (2024). https://doi.org/10.1007/s13399-022-02866-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02866-7

Keywords

Navigation