Skip to main content
Log in

Calculation of effective diffusivity, mass transfer coefficient, kinetic, and thermodynamic parameters for the extraction process of bioactive materials from fig leaves

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Prediction of kinetic, thermodynamic, and mass transfer parameters enable the comprehension of the structure of the solid–liquid extraction system. In this study, fig (Ficus carica) leaves were extracted by ethanol solution (10%, v/v) through microwave-assisted extraction (MAE) under 100, 200, 300, 400, and 500 W. Diffusion coefficient was calculated as 1.958 \(\times\) 10−7, 1.543 \(\times\) 10−7, and 1.089 \(\times\) 10−7 m2 s−1, while mass transfer coefficient changed as 0.0364, 0.0573, and 0.0541 m s−1 under 345, 351, and 352 K, respectively. Biot number (1487.23, 2970.83, and 3974.28) was elevated with temperature. Pseudo-second-order kinetic equation characterized the kinetic findings of the MAE more satisfactorily comparing to pseudo-first-order kinetic equation. An endothermic, and spontaneous nature was observed based on the enthalpy (281.98 kJ mol−1), entropy (0.834 kJ mol−1 K−1) and Gibbs free energy changes (− 5.748, − 10.752, and − 11.586 kJ mol−1).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Khubber S, Marti-Quijal FJ, Tomasevic I, et al. (2021) Application of fermentation to recover high-added value compounds from food by-products. Ferment Process 195–219. https://doi.org/10.1002/9781119505822.CH7

  2. Torres-Valenzuela LS, Ballesteros-Gómez A, Rubio S (2019) Green solvents for the extraction of high added-value compounds from agri-food waste. Food Eng Rev 121(12):83–100. https://doi.org/10.1007/S12393-019-09206-Y

    Article  Google Scholar 

  3. Li C, Yu M, Li S, et al. (2021) Valorization of Fig (Ficus carica L.) Waste leaves: HPLC-QTOF-MS/MS-DPPH system for online screening and ıdentification of antioxidant compounds. Plants 10:2532. https://doi.org/10.3390/PLANTS10112532

  4. Alcántara C, Žugčić T, Abdelkebir R, et al. (2020) Effects of ultrasound-assisted extraction and solvent on the phenolic profile, bacterial growth, and anti-ınflammatory/antioxidant activities of mediterranean olive and fig leaves extracts. Mol 25:1718. https://doi.org/10.3390/MOLECULES25071718

  5. Mahmoudi S, Khali M, Benkhaled A et al (2016) Phenolic and flavonoid contents, antioxidant and antimicrobial activities of leaf extracts from ten Algerian Ficus carica L. varieties. Asian Pac J Trop Biomed 6:239–245. https://doi.org/10.1016/J.APJTB.2015.12.010

    Article  CAS  Google Scholar 

  6. Konyalιoğlu S, Sağlam H, Kιvçak B et al (2008) α-Tocopherol, flavonoid, and phenol contents and antioxidant activity of ficus carica. Leaves 43:683–686. https://doi.org/10.1080/13880200500383538

    Article  CAS  Google Scholar 

  7. Ali B, Mujeeb M, Aeri V et al (2011) Anti-inflammatory and antioxidant activity of Ficus carica Linn. Leaves 26:460–465. https://doi.org/10.1080/14786419.2010.488236

    Article  CAS  Google Scholar 

  8. Nadeem M, Zeb A (2018) Impact of maturity on phenolic composition and antioxidant activity of medicinally important leaves of Ficus carica L. Physiol Mol Biol Plants 24:881–887. https://doi.org/10.1007/S12298-018-0550-3/FIGURES/4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Horozić E, Merzić S, Šehanović A, et al. (2021) Influence of solvents on polyphenol content and antioxidant activity of fig leaf extracts obtained by maceration and ultrasonic extraction International Journal of Advanced Chemistry Influence of solvents on polyphenol content and antioxidant activity of fig leaf extracts obtained by maceration and ultrasonic extraction. Artic Int J Adv Chem 9:70–73. https://doi.org/10.14419/ijac.v9i2.31590

  10. Bagade SB, Patil M (2021) Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: a review. Crit Rev Anal Chem 51:138–149. https://doi.org/10.1080/10408347.2019.1686966/FORMAT/EPUB

    Article  CAS  PubMed  Google Scholar 

  11. Mirzadeh M, Arianejad MR, Khedmat L (2020) Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: A review. Carbohydr Polym 229:115421. https://doi.org/10.1016/J.CARBPOL.2019.115421

    Article  CAS  PubMed  Google Scholar 

  12. Abishli R, Albarri R, Şahin S (2021) Mass transfer, kinetics, and thermodynamics studies during the extraction of polyphenols from Feijoa sellowiana peels. J Food Process Preserv e15736. https://doi.org/10.1111/JFPP.15736

  13. Albarri R, Toprakçı İ, Kurtulbaş E, Şahin S (2021) Estimation of diffusion and mass transfer coefficients for the microwave-assisted extraction of bioactive substances from Moringa oleifera leaves. Biomass Conver Biorefinery 1–8. https://doi.org/10.1007/s13399-021-01443-8

  14. Kurtulbaş E (2022) Prediction of mass transfer and kinetic behavior during the extraction of high added-value products from sour cherry (Prunus cerasus L.) peels. J Food Process Preserv. https://doi.org/10.1111/JFPP.16401

  15. Albarri R, Şahin S (2021) Kinetics, thermodynamics, and mass transfer mechanism of the ultrasound-assisted extraction of bioactive molecules from Moringa oleifera leaves. Biomass Conver Biorefinery 1:1–8. https://doi.org/10.1007/S13399-021-01686-5

  16. Chutia H, Mahanta CL (2021) Green ultrasound and microwave extraction of carotenoids from passion fruit peel using vegetable oils as a solvent: Optimization, comparison, kinetics, and thermodynamic studies. Innov Food Sci Emerg Technol 67:102547. https://doi.org/10.1016/j.ifset.2020.102547

    Article  CAS  Google Scholar 

  17. Liao Y, Fan F, Zhu A et al (2021) Kinetics characteristics and thermodynamics analysis of soybean pods sterols extraction process. Environ Challenges 5:100357. https://doi.org/10.1016/J.ENVC.2021.100357

    Article  Google Scholar 

  18. Şahin S (2015) A novel technology for extraction of phenolic antioxidants from mandarin (Citrus deliciosa Tenore) leaves: solvent-free microwave extraction. Korean J Chem Eng 32:950–957. https://doi.org/10.1007/s11814-014-0293-y

    Article  CAS  Google Scholar 

  19. Bhagya Raj GVS, Dash KK (2020) Ultrasound-assisted extraction of phytocompounds from dragon fruit peel: optimization, kinetics and thermodynamic studies. Ultrason Sonochem 68:105180. https://doi.org/10.1016/j.ultsonch.2020.105180

    Article  CAS  PubMed  Google Scholar 

  20. Goula AM (2013) Ultrasound-assisted extraction of pomegranate seed oil - kinetic modeling. J Food Eng 117:492–498. https://doi.org/10.1016/j.jfoodeng.2012.10.009

    Article  Google Scholar 

  21. Lima EC, Gomes AA, Tran HN (2020) Comparison of the nonlinear and linear forms of the van’t Hoff equation for calculation of adsorption thermodynamic parameters (∆S° and ∆H°). J Mol Liq 311:113315. https://doi.org/10.1016/j.molliq.2020.113315

    Article  CAS  Google Scholar 

  22. Chaves N, Santiago A, Alías JC (2020) Quantification of the antioxidant activity of plant extracts: analysis of sensitivity and hierarchization based on the method used. Antioxidants 9:76. https://doi.org/10.3390/ANTIOX9010076

  23. Olszowy M, Dawidowicz AL (2018) Is it possible to use the DPPH and ABTS methods for reliable estimation of antioxidant power of colored compounds? Chem Pap 72:393–400. https://doi.org/10.1007/S11696-017-0288-3/TABLES/3

    Article  CAS  Google Scholar 

  24. Thaipong K, Boonprakob U, Crosby K et al (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 19:669–675. https://doi.org/10.1016/j.jfca.2006.01.003

    Article  CAS  Google Scholar 

  25. Zhou HY, Liu CZ (2006) Microwave-assisted extraction of solanesol from tobacco leaves. J Chromatogr A 1129:135–139. https://doi.org/10.1016/J.CHROMA.2006.07.083

    Article  CAS  PubMed  Google Scholar 

  26. Ateş F, Şahin S, İlbay Z, Kırbaşlar Şİ (2017) A green valorisation approach using microwaves and supercritical CO2 for high-added value ıngredients from Mandarin (Citrus deliciosa Tenore) leaf waste. Waste and Biomass Valorization 1–14. https://doi.org/10.1007/s12649-017-0074-z

  27. Mosca F, Hidalgo GI, Villasante J, Almajano MP (2018) Continuous or batch solid-liquid extraction of antioxidant compounds from seeds of Sterculia apetala plant and kinetic release study. Mol 23:1759. https://doi.org/10.3390/MOLECULES23071759

  28. Alara OR, Abdurahman NH (2019) Microwave-assisted extraction of phenolics from Hibiscus sabdariffa calyces: kinetic modelling and process intensification. Ind Crops Prod 137:528–535. https://doi.org/10.1016/J.INDCROP.2019.05.053

    Article  CAS  Google Scholar 

  29. Górnicki K, Winiczenko R, Kaleta A (2019) Estimation of the biot number using genetic algorithms: Application for the drying process. Energies 12:2822. https://doi.org/10.3390/en12142822

    Article  Google Scholar 

  30. Pinelo M, Sineiro J, Núñez MJ (2006) Mass transfer during continuous solid-liquid extraction of antioxidants from grape byproducts. J Food Eng 77:57–63. https://doi.org/10.1016/j.jfoodeng.2005.06.021

    Article  CAS  Google Scholar 

  31. Jo Y-J, Kim J-H (2019) Effective Diffusivity and mass transfer coefficient during the extraction of paclitaxel from taxus chinensis using methanol. Biotechnol Bioprocess Eng 24:818–823. https://doi.org/10.1007/s12257-019-0148-9

    Article  CAS  Google Scholar 

  32. Freitas PA V., González-Martínez C, Chiralt A (2020) Application of ultrasound pre-treatment for enhancing extraction of bioactive compounds from rice straw. Foods 9:1657. https://doi.org/10.3390/FOODS9111657

  33. Agu CM, Menkiti MC, Ohale PE, Ugonabo VI (2021) Extraction modeling, kinetics, and thermodynamics of solvent extraction of Irvingia gabonensis kernel oil, for possible industrial application. Eng Reports 3:e12306. https://doi.org/10.1002/ENG2.12306

    Article  CAS  Google Scholar 

  34. Rakotondramasy-Rabesiaka L, Havet JL, Porte C, Fauduet H (2009) Solid–liquid extraction of protopine from Fumaria officinalis L.—Kinetic modelling of influential parameters. Ind Crops Prod 29:516–523. https://doi.org/10.1016/J.INDCROP.2008.10.001

    Article  CAS  Google Scholar 

  35. Qu W, Pan Z, Ma H (2010) Extraction modeling and activities of antioxidants from pomegranate marc. J Food Eng 99:16–23. https://doi.org/10.1016/J.JFOODENG.2010.01.020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Büşra Zülal Ek: validation, formal analysis. Ebru Kurtulbaş: software, formal analysis, methodology. Selin Şahin: conceptualization, Methodology, writing-reviewing and editing.

Corresponding author

Correspondence to Selin Şahin.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ek, B.Z., Kurtulbaş, E. & Şahin, S. Calculation of effective diffusivity, mass transfer coefficient, kinetic, and thermodynamic parameters for the extraction process of bioactive materials from fig leaves. Biomass Conv. Bioref. 14, 8385–8393 (2024). https://doi.org/10.1007/s13399-022-02852-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02852-z

Keywords

Navigation