Skip to main content
Log in

Innovative uses of biochar derived from tannery waste as a soil amendment and fertilizer

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The aim of this study was to obtain a hydrogel coating based on crosslinked alginate enriched with tannery waste-derived biochar and macro- and micronutrients. Sodium alginate (4% wt./wt. and 6% wt./wt.), carboxymethyl cellulose (0.1% wt./wt.), and biochar based on non-chrome waste from the tanning industry (5% wt./wt. and 10% wt./wt.) were used to produce polymeric coatings. The effect of micronutrient concentration (Cu(II), Mn(II), and Zn(II)) in the crosslinking solution on the content of elements in the seed coat was evaluated. SEM–EDS surface analysis showed that the applied method enables/allows uniform coverage of the seeds with the composite. At the same time, the addition of biochar causes significant surface development and slight cracking. The study showed that an alginate coating (6% wt./wt.) with biochar (5% wt./wt.) crosslinked in a 1500 mg/L solution results in a swelling index of 490%. The controlled release of macro- and micronutrients was confirmed in/by in vitro tests. The effectiveness of the coatings was analyzed in germination tests. The addition of biochar was found to have a biostimulatory effect on the growth of the underground parts of the plant (the root length increased by approximately 50% compared to seeds without coating). Seed coating with immobilized biochar can advantageously be commercialized since stimulating early root growth can lead to increased yields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALG:

Sodium alginate

ALG4:

Solution of alginate (4% wt./wt.) with carboxymethylcellulose (0.1% wt./wt.) and NPK (10% wt./wt.)

ALG6:

Solution of alginate (6% wt./wt.) with carboxymethylcellulose (0.1% wt./wt.) and NPK (10% wt./wt.)

BC:

Tannery waste-derived biochar

CMC:

Carboxymethylcellulose

ICP-OES:

Inductively coupled plasma optical emission spectrometry

M:

Micronutrient solution

MAP:

Mono-ammonium phosphate

S0:

Uncoated seeds

S1:

Seed coating containing a solution of alginate (4% wt./wt.) and carboxymethylcellulose (0.1% wt./wt.) with NPK, crosslinked in microelement solution (15,000 mg/L)

S1.1:

Seed coating containing a solution of alginate (4% wt./wt.) and carboxymethylcellulose (0.1% wt./wt.) with NPK, crosslinked in microelement solution (1500 mg/L)

S1.2:

Seed coating containing a solution of alginate (4% wt./wt.) and carboxymethylcellulose (0.1% wt./wt.) with NPK, crosslinked in microelement solution (600 mg/L)

S2:

Seed coating containing a solution of alginate (6% wt./wt.) and carboxymethylcellulose (0.1% wt./wt.) with NPK, crosslinked in microelement solution (15,000 mg/L)

S2.1:

Seed coating containing a solution of alginate (6% wt./wt.) and carboxymethylcellulose (0.1% wt./wt.) with NPK, crosslinked in microelement solution (1500 mg/L)

S2.2:

Seed coating containing a solution of alginate (6% wt./wt.) and carboxymethylcellulose (0.1% wt./wt.) with NPK, crosslinked in microelement solution (600 mg/L)

S3:

Seed coating containing a solution of alginate (4% wt./wt.) and carboxymethylcellulose (0.1% wt./wt.) with biochar (10% wt./wt.) and NPK, crosslinked in a microelement solution (15,000 mg/L)

S3.1:

Seed coating containing a solution of alginate (4% wt./wt.) and carboxymethylcellulose (0.1% wt./wt.) with biochar (10% wt./wt.) and NPK, crosslinked in a microelement solution (1500 mg/L)

S3.2:

Seed coating containing a solution of alginate (4% wt./wt.) and carboxymethylcellulose (0.1% wt./wt.) with biochar (10% wt./wt.) and NPK, crosslinked in a microelement solution (600 mg/L)

S4:

Seed coating containing a solution of alginate (4% wt./wt.) and carboxymethylcellulose (0.1% wt./wt.) with biochar (5% wt./wt.) and NPK, crosslinked in a microelement solution (15,000 mg/L)

S4.1:

Seed coating containing a solution of alginate (4% wt./wt.) and carboxymethylcellulose (0.1% wt./wt.) with biochar (5% wt./wt.) and NPK, crosslinked in a microelement solution (1500 mg/L)

S4.2:

Seed coating containing a solution of alginate (4% wt./wt.) and carboxymethylcellulose (0.1% wt./wt.) with biochar (5% wt./wt.) and NPK, crosslinked in a microelement solution (600 mg/L)

S5:

Seed coating containing a solution of alginate (6% wt./wt.) and carboxymethylcellulose (0.1% wt./wt.) with biochar (10% wt./wt.) and NPK, crosslinked in a microelement solution (15,000 mg/L)

S5.1:

Seed coating containing a solution of alginate (6% wt./wt.) and carboxymethylcellulose (0.1% wt./wt.) with biochar (10% wt./wt.) and NPK, crosslinked in a microelement solution (1500 mg/L)

S5.2:

Seed coating containing a solution of alginate (6% wt./wt.) and carboxymethylcellulose (0.1% wt./wt.) with biochar (10% wt./wt.) and NPK, crosslinked in a microelement solution (600 mg/L)

S6:

Seed coating containing a solution of alginate (6% wt./wt.) and carboxymethylcellulose (0.1% wt./wt.) with biochar (5% wt./wt.) and NPK, crosslinked in a microelement solution (15,000 mg/L)

S6.1:

Seed coating containing a solution of alginate (6% wt./wt.) and carboxymethylcellulose (0.1% wt./wt.) with biochar (5% wt./wt.) and NPK, crosslinked in a microelement solution (1500 mg/L)

S6.2:

Seed coating containing a solution of alginate (6% wt./wt.)) and carboxymethylcellulose (0.1% wt./wt.) with biochar (5% wt./wt.) and NPK, crosslinked in microelement solution (1500 mg/L)

SEM-EDX:

Scanning electron microscopy with energy-dispersive X-ray spectroscopy

D:

Degradation (%)

kN :

Kinetic parameter of Newton’s equation (min−1)

kP :

Kinetic parameter of Page’s equation (min−1)

K1 :

Peleg rate constant (h%−1)

K2 :

Peleg capacity constant (%−1)

m0 :

Initial coating materials mass (g)

mt :

Mass of coating material after time (g)

M:

The moisture content at time t (g)

Me:

Equilibrium moisture content (g)

MR:

Moisture content ratio (% w/w)

M0 :

Initial moisture content (g)

BL:

Bioavailability/leachability (%)

CE :

Concentration of elements in the extract (mg/L)

Cs :

Content of elements in the extracted coating seeds (mg/kg)

VE :

The volume of the extract (L)

mS :

Mass of the extracted coating seeds (kg)

t:

Time (min)

References

  1. Yang L, Liao F, Huang M et al (2015) Biochar improves sugarcane seedling root and soil properties under a pot experiment. Sugar Tech 17:36–40. https://doi.org/10.1007/s12355-014-0335-0

    Article  CAS  Google Scholar 

  2. HS Elshafie I Camele 2021 Applications of absorbent polymers for sustainable plant protection and crop yield Sustain 13 https://doi.org/10.3390/su13063253

  3. X Zhong M Wang E Jiang 2018 Preparation of an environment-friendly biochar fertilizer IOP ConfSer Mater Sci Eng 301 https://doi.org/10.1088/1757-899X/301/1/012157

  4. V Pathak RPK Ambrose 2020 Starch-based biodegradable hydrogel as seed coating for corn to improve early growth under water shortage J ApplPolym Sci 137 https://doi.org/10.1002/app.48523

  5. H Rafeeq SA Qamar H Munir et al 2022 Biological macromolecules for enzyme immobilization BiolMacromol 529–546 https://doi.org/10.1016/B978-0-323-85759-8.00023-3

  6. Czekała W, Jezowska A, Chełkowski D (2019) The use of biochar for the production of organic fertilizers. J Ecol Eng 20:1–8. https://doi.org/10.12911/22998993/93869

    Article  Google Scholar 

  7. Antón-Herrero R, Vega-Jara L, García-Delgado C et al (2022) Synergistic effects of biochar and biostimulants on nutrient and toxic element uptake by pepper in contaminated soils. J Sci Food Agric 102:167–174. https://doi.org/10.1002/jsfa.11343

    Article  CAS  PubMed  Google Scholar 

  8. Eizenberg H, Plakhine D, Ziadne H et al (2017) Non-chemical control of root parasitic weeds with biochar. Front Plant Sci 8:1–9. https://doi.org/10.3389/fpls.2017.00939

    Article  Google Scholar 

  9. L Xiu W Zhang D Wu et al 2021 Biochar can improve biological nitrogen fixation by altering the root growth strategy of soybean in Albic soil Sci Total Environ 773 https://doi.org/10.1016/j.scitotenv.2020.144564

  10. Feng L, Xu W, Tang G et al (2021) Biochar induced improvement in root system architecture enhances nutrient assimilation by cotton plant seedlings. BMC Plant Biol 21:1–14. https://doi.org/10.1186/s12870-021-03026-1

    Article  CAS  Google Scholar 

  11. Skrzypczak D, Szopa D, Mikula K et al (2022) Tannery waste-derived biochar as a carrier of micronutrients essential to plants. Chemosphere 294:133720. https://doi.org/10.1016/J.CHEMOSPHERE.2022.133720

    Article  CAS  PubMed  Google Scholar 

  12. Kuna-Broniowska I, Blicharz-Kania A, Andrejko D et al (2020) (2019) Modelling water absorption in micronized lentil seeds with the use of Peleg’s equation. Sustain 12:261–12:261. https://doi.org/10.3390/SU12010261

    Article  CAS  Google Scholar 

  13. Roy M, Bulbul MAI, Hossain MA et al (2022) Study on the drying kinetics and quality parameters of osmotic pre-treated dried Satkara (Citrus macroptera) fruits. J Food Meas Charact 16:471–485. https://doi.org/10.1007/s11694-021-01177-1

    Article  Google Scholar 

  14. Behera B, Balasubramanian P (2021) Experimental and modelling studies of convective and microwave drying kinetics for microalgae. Bioresour Technol 340:125721. https://doi.org/10.1016/J.BIORTECH.2021.125721

    Article  CAS  PubMed  Google Scholar 

  15. G Izydorczyk U Sienkiewicz-Cholewa S Baśladyńska et al 2020 New environmentally friendly bio-based micronutrient fertilizer by biosorption: from laboratory studies to the field Sci Total Environ 710 https://doi.org/10.1016/j.scitotenv.2019.136061

  16. Jin S, Wang Y, He J et al (2013) Preparation and properties of a degradable interpenetrating polymer networks based on starch with water retention, amelioration of soil, and slow release of nitrogen and phosphorus fertilizer. J Appl Polym Sci 128:407–415. https://doi.org/10.1002/app.38162

    Article  CAS  Google Scholar 

  17. López-Velázquez JC, Rodríguez-Rodríguez R, Espinosa-Andrews H et al (2019) Gelatin–chitosan–PVA hydrogels and their application in agriculture. J Chem Technol Biotechnol 94:3495–3504. https://doi.org/10.1002/jctb.5961

    Article  CAS  Google Scholar 

  18. Pavelková M, Kubová K, Vysloužil J et al (2017) Biological effects of drug-free alginate beads cross-linked by copper ions prepared using external ionotropic gelation. AAPS PharmSciTech 18:1343–1354. https://doi.org/10.1208/s12249-016-0601-4

    Article  CAS  PubMed  Google Scholar 

  19. Mahou R, Borcard F, Crivelli V et al (2015) Tuning the properties of hydrogel microspheres by adding chemical cross-linking functionality to sodium alginate. Chem Mater 27:4380–4389. https://doi.org/10.1021/acs.chemmater.5b01098

    Article  CAS  Google Scholar 

  20. Patel S, Bajpai J, Saini R et al (2018) Sustained release of pesticide (Cypermethrin) from nanocarriers: an effective technique for environmental and crop protection. Process Saf Environ Prot 117:315–325. https://doi.org/10.1016/j.psep.2018.05.012

    Article  CAS  Google Scholar 

  21. Şanli O, Işiklan N (2006) Controlled release formulations of carbaryl based on copper alginate, barium alginate, and alginic acid beads. J Appl Polym Sci 102:4245–4253. https://doi.org/10.1002/APP.24882

    Article  Google Scholar 

  22. Chan LW, Jin Y, Heng PWS (2002) Cross-linking mechanisms of calcium and zinc in production of alginate microspheres. Int J Pharm 242:255–258. https://doi.org/10.1016/S0378-5173(02)00169-2

    Article  CAS  PubMed  Google Scholar 

  23. Liling G, Di Z, Jiachao X et al (2016) Effects of ionic crosslinking on physical and mechanical properties of alginate mulching films. Carbohydr Polym 136:259–265. https://doi.org/10.1016/J.CARBPOL.2015.09.034

    Article  PubMed  Google Scholar 

  24. Skrzypczak D, Mikula K, Izydorczyk G et al (2021) New directions for agricultural wastes valorization as hydrogel biocomposite fertilizers. J Environ Manage 299:113480. https://doi.org/10.1016/J.JENVMAN.2021.113480

    Article  CAS  PubMed  Google Scholar 

  25. Turhan M, Sayar S, Gunasekaran S (2002) Application of Peleg model to study water absorption in chickpea during soaking. J Food Eng 53:153–159. https://doi.org/10.1016/S0260-8774(01)00152-2

    Article  Google Scholar 

  26. Bruun EW, Petersen CT, Hansen E et al (2014) Biochar amendment to coarse sandy subsoil improves root growth and increases water retention. Soil Use Manag 30:109–118. https://doi.org/10.1111/sum.12102

    Article  Google Scholar 

  27. Sun H, Zhang M, Liu Y, et al (2021) Improved viability of Lactobacillus plantarum embedded in whey protein concentrate/pullulan/trehalose hydrogel during freeze drying. https://doi.org/10.1016/j.carbpol.2021.117843

  28. Chiaregato CG, Faez R (2021) Micronutrients encapsulation by starch as an enhanced efficiency fertilizer. Carbohydr Polym 271:118419. https://doi.org/10.1016/J.CARBPOL.2021.118419

    Article  CAS  PubMed  Google Scholar 

  29. Noordin N, Ghazali S, Adnan N (2018) Impact of sap-biochar incorporation on controlled release water retention fertilizer (CRWR) towards growth of okras (Abelmoschus Esculentus)

  30. Izydorczyk G, Mikula K, Skrzypczak D et al (2022) Valorization of poultry slaughterhouse waste for fertilizer purposes as an alternative for thermal utilization methods. J Hazard Mater 424:127328. https://doi.org/10.1016/J.JHAZMAT.2021.127328

    Article  CAS  PubMed  Google Scholar 

  31. Mellis EV, Casagrande JC, Soares MR (2017) Nickel adsorption and desorption in an acric oxisol as a function of pH, ionic strength and incubation time. Ciência e Agrotecnologia 41:32–41. https://doi.org/10.1590/1413-70542017411020116

    Article  CAS  Google Scholar 

  32. Samoraj M (2016) Biosorpcja mikroelementów do biomasy jako metoda utylizacji pozostałości po ekstrakcji nadkrytycznej. Rap Wydz Chem Politech Wrocławskiej Ser PRE 10:167

    Google Scholar 

  33. Wilske B, Bai M, Lindenstruth B et al (2014) Biodegradability of a polyacrylate superabsorbent in agricultural soil. Environ Sci Pollut Res 21:9453–9460. https://doi.org/10.1007/s11356-013-2103-1

    Article  CAS  Google Scholar 

  34. M Gao J Yang C Liu et al 2021 Effects of long-term biochar and biochar-based fertilizer application on brown earth soil bacterial communities AgricEcosyst Environ 309 https://doi.org/10.1016/j.agee.2020.107285

  35. Glaser B, Wiedner K, Seelig S et al (2015) Biochar organic fertilizers from natural resources as substitute for mineral fertilizers. Agron Sustain Dev 35:667–678. https://doi.org/10.1007/s13593-014-0251-4

    Article  CAS  Google Scholar 

  36. Romanowska-Duda Z, Janas R, Grzesik M (2019) Application of Phytotoxkit in the quick assessment of ashes suitability as fertilizers in sorghum crops. Int Agrophysics 33:145–152. https://doi.org/10.31545/intagr/104597

    Article  CAS  Google Scholar 

  37. Kolton M, Graber ER, Tsehansky L et al (2017) Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere. New Phytol 213:1393–1404. https://doi.org/10.1111/NPH.14253

    Article  CAS  PubMed  Google Scholar 

  38. Song X, Razavi BS, Ludwig B et al (2020) Combined biochar and nitrogen application stimulates enzyme activity and root plasticity. Sci Total Environ 735:139393. https://doi.org/10.1016/j.scitotenv.2020.139393

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Awad YM, Lee SE, Ahmed MBM et al (2017) Biochar, a potential hydroponic growth substrate, enhances the nutritional status and growth of leafy vegetables. J Clean Prod 156:581–588. https://doi.org/10.1016/J.JCLEPRO.2017.04.070

    Article  CAS  Google Scholar 

  40. Zhu X, Chen B, Zhu L, Xing B (2017) Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environ Pollut 227:98–115. https://doi.org/10.1016/J.ENVPOL.2017.04.032

    Article  CAS  PubMed  Google Scholar 

  41. Zheng H, Wang Z, Deng X et al (2013) Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 206:32–39. https://doi.org/10.1016/J.GEODERMA.2013.04.018

    Article  ADS  CAS  Google Scholar 

  42. Glaser B (2019) Lehr VI (2019) Biochar effects on phosphorus availability in agricultural soils: A meta-analysis. Sci Reports 91(9):1–9. https://doi.org/10.1038/s41598-019-45693-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is financed by the National Science Centre in Poland, grant nr 2018/31/B/NZ9/02345. Graphical abstract was created with Biorender.com.

Funding

This work was supported by the National Science Centre in Poland, grant nr 2018/31/B/NZ9/02345.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Dawid Skrzypczak; methodology: Dawid Skrzypczak, Katarzyna Chojnacka; investigation: Dawid Skrzypczak, Filip Gil, Aleksandra Gersz, Małgorzata Mironiuk, Grzegorz Izydorczyk, Viktoria Hoppe; writing – original draft preparation: Dawid Skrzypczak, Katarzyna Chojnacka, Aleksandra Gersz, Filip Gil, Viktoria Hoppe, Grzegorz Izydorczyk; writing – review and editing: Anna Witek-Krowiak, Katarzyna Chojnacka, Konstantinos Moustakas; funding acquisition: Anna Witek-Krowiak; supervision: Dawid Skrzypczak, Katarzyna Chojnacka, Anna Witek-Krowiak.

Corresponding author

Correspondence to Dawid Skrzypczak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3359 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skrzypczak, D., Gersz, A., Gil, F. et al. Innovative uses of biochar derived from tannery waste as a soil amendment and fertilizer. Biomass Conv. Bioref. 14, 7057–7073 (2024). https://doi.org/10.1007/s13399-022-02805-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02805-6

Keywords

Navigation