Skip to main content

Advertisement

Log in

Recent developments in synthesizing biolubricants — a review

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Biolubricants are bio-based compounds that represent a renewable and biodegradable alternative to petroleum-based lubricants. Although biolubricant applications appear promising, their commercial deployment is still limited. Research in the field of biolubricants is continuously developing to improve their properties as well as their production processes, with the aim of overcoming the current limitations and enhance large-scale application. This review paper aims at reviewing the most recent developments in the ever-evolving field of biolubricant synthesis, focusing on novel feedstocks and catalysts, as well as new chemical modification routes and additive components that aim at further improving their sustainability. Moreover, to bridge the gap between small-scale synthesis and industrial realization, techno-economic and life cycle studies aiming at assessing the feasibility of large-scale biolubricant production are also reviewed. Finally, some considerations and future prospects are discussed based on the key findings of the analysis, which revealed that, while considerable effort is being made to improve the properties and the sustainability of biolubricants, significant work has yet to be done in terms of design and optimization of an industrial-scale process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

2EH:

2-Ethylhexyl

API:

American Petroleum Institute

CNC:

Cellulose nanocrystals

FFAs:

Free fatty acids

HTHS:

High temperature–high shear viscosity

IA:

Isostearic acid

ILs:

Ionic liquids

LCA:

Life cycle assessment

MoDTC:

Molybdenum dithiocarbamate

NHC:

N-heterocyclic carbene

NP:

Nanoparticles

NPG:

Neopentyl glycol

PAO:

Polyalphaolefin

SAE:

Society of Automotive Engineers

TEA:

Techno-economic analysis

TMP:

Trimethylolpropane

TON:

Turnover number

VPC:

Vertical pulsed column

WCO :

Waste cooking oil

ZDDP:

Zinc dialkyldithiophosphate

References

  1. CK Ho KB McAuley BA Peppley 2019 Biolubricants through renewable hydrocarbons: a perspective for new opportunities Renew Sustain Energy Rev 113 https://doi.org/10.1016/j.rser.2019.109261

  2. Syahir AZ, Zulkifli NWM, Masjuki HH et al (2017) A review on bio-based lubricants and their applications. J Clean Prod 168:997–1016. https://doi.org/10.1016/j.jclepro.2017.09.106

    Article  Google Scholar 

  3. (2021) Lubricants market size, share & trends analysis report by application (industrial, marine, automotive, aerospace), by region (Asia Pacific, North America, Europe, MEA), and segment forecasts, 2021 - 2028

  4. Panchal TM, Patel A, Chauhan DD et al (2017) A methodological review on bio-lubricants from vegetable oil based resources. Renew Sustain Energy Rev 70:65–70. https://doi.org/10.1016/j.rser.2016.11.105

    Article  Google Scholar 

  5. Reeves CJ, Siddaiah A, Menezes PL (2017) A review on the science and technology of natural and synthetic biolubricants. J Bio- Tribo-Corrosion 3:1–27. https://doi.org/10.1007/s40735-016-0069-5

    Article  Google Scholar 

  6. ICA Bolina RAB Gomes AA Mendes 2021 Biolubricant production from several oleaginous feedstocks using lipases as catalysts: current scenario and future perspectives Bioenergy Res https://doi.org/10.1007/s12155-020-10242-4

  7. Salih N, Salimon J (2021) A review on eco-friendly green biolubricants from renewable and sustainable plant oil sources. Biointerface Res Appl Chem 11:13303–13327. https://doi.org/10.33263/BRIAC115.1330313327

  8. Encinar JM, Nogales S, González JF (2020) Biodiesel and biolubricant production from different vegetable oils through transesterification. Eng Reports 2:1–10. https://doi.org/10.1002/eng2.12190

    Article  Google Scholar 

  9. Salih N, Salimon J, Abdullah BM, Yousif E (2017) Thermo-oxidation, friction-reducing and physicochemical properties of ricinoleic acid based-diester biolubricants. Arab J Chem 10:S2273–S2280. https://doi.org/10.1016/j.arabjc.2013.08.002

    Article  Google Scholar 

  10. Zulkifli NWM, Masjuki HH, Kalam MA et al (2014) Lubricity of bio-based lubricant derived from chemically modified jatropha methyl ester. J Tribol 1:18–39

    Google Scholar 

  11. Mohd Nor N, Salih N, Salimon J (2021) Chemically modified Jatropha curcas oil for biolubricant applications. Hem Ind 75:117–128. https://doi.org/10.2298/HEMIND200809009N

    Article  Google Scholar 

  12. Mobarak HM, Niza Mohamad E, Masjuki HH et al (2014) The prospects of biolubricants as alternatives in automotive applications. Renew Sustain Energy Rev 33:34–43. https://doi.org/10.1016/J.RSER.2014.01.062

    Article  Google Scholar 

  13. Salimon J, Abdullah BM, Yusop RM, Salih N (2014) Synthesis, reactivity and application studies for different biolubricants. Chem Cent J 8:1–11. https://doi.org/10.1186/1752-153X-8-16

    Article  Google Scholar 

  14. Salih N (2022) A review on new trends, challenges and prospects of ecofriendly friendly green food-grade biolubricants. Biointerface Res Appl Chem 12:1185–1207. https://doi.org/10.33263/briac121.11851207

  15. CA Popoola KK Ikpambese 2021 Effect of titanium oxide nanoparticle enrichment on chemo-physical properties of bio-lubricant from sandbox seed oil 4 175 191

  16. Chan CH, Tang SW, Mohd NK et al (2018) Tribological behavior of biolubricant base stocks and additives. Renew Sustain Energy Rev 93:145–157. https://doi.org/10.1016/J.RSER.2018.05.024

    Article  Google Scholar 

  17. Zadorozhnaya E, Levanov I, Oskina O (2016) Study of HTHS viscosity of modern motor oils. Procedia Eng 150:602–606. https://doi.org/10.1016/j.proeng.2016.07.051

    Article  Google Scholar 

  18. Boffa AB, Hirano S (2001) Oil impacts on sequence VIB fuel economy. In: International Spring Fuels & Lubricants Meeting. SAE International

  19. Goldmints I, Brown M, Selby T et al (2010) Extending SAE J300 to viscosity grades below SAE 20. SAE Int J Fuels Lubr 3:1030–1040. https://doi.org/10.4271/2010-01-2286

    Article  Google Scholar 

  20. T Ohmori M Tohyama M Yamamoto K Akiyama 1993 Influence of engine oil viscosity on piston ring and cam face wear SAE Inthttps://doi.org/10.4271/932782

  21. Salimon J, Salih N, Yousif E (2010) Biolubricants: raw materials, chemical modifications and environmental benefits. Eur J Lipid Sci Technol 112:519–530. https://doi.org/10.1002/ejlt.200900205

    Article  Google Scholar 

  22. Alang MB, Ndikontar MK, Sani YM, Ndifon PT (2018) Synthesis and characterisation of a biolubricant from Cameroon palm kernel seed oil using a locally produced base catalyst from plantain peelings. Green Sustain Chem 08:275–287. https://doi.org/10.4236/gsc.2018.83018

    Article  Google Scholar 

  23. RT Yunardi AA Rizqi RN Naufal FCS Arisgraha 2019 Digital image segmentation for foaminess measurement on foam stability of the lubricant products J PhysConf Ser 1171 https://doi.org/10.1088/1742-6596/1171/1/012029

  24. Canter N (2020) Effect of filtration on lubricant foaming. Tribol Lubr Technol 76:18–19

    Google Scholar 

  25. American Petroleum Institute (2021) Engine Oil Licensing and Certification System Seventeenth Edition. API 1509 Appendix E

  26. Stojilković M, Davidović Z (2015) The effect of certain additives on the foaming of vegetable oil. Fuels Lubr 54:357–362

    Google Scholar 

  27. Appeldoorn JK, Dukek WG (1966) Lubricity of jet fuels. In: National Aeronautic and Space Engineering and Manufacturing Meeting. SAE International

  28. Mitchell K (1995) The lubricity of winter diesel fuels. SAE Trans 104:999–1018

    Google Scholar 

  29. Sanchez CJ (2011) Tribological characterization of carbon based solid lubricants. Texas A&M University

  30. Hamdan SH (2018) Chong WWF (2018) Simulation of lubricant Stribeck curve for SAE grade engine lubricants. Proc Asia Int Conf Tribol 3:52–54

    Google Scholar 

  31. Bhushan B (2013) Principles and applications of tribology. John Wiley & Sons, West Sussex, UK

    Book  Google Scholar 

  32. X Zhang H Jing Y Tian Y Meng 2020 Thermodynamics model for Stribeck curve and experiments: the role of interfacial interaction J Tribol 142 https://doi.org/10.1115/1.4046410

  33. Lijesh KP, Khonsari MM (2018) On the degradation of tribo-components in boundary and mixed lubrication regimes. Tribol Lett 67:12. https://doi.org/10.1007/s11249-018-1125-8

    Article  Google Scholar 

  34. Ong HC, Silitonga AS, Masjuki HH et al (2013) Production and comparative fuel properties of biodiesel from non-edible oils: Jatropha curcas, Sterculia foetida and Ceiba pentandra. Energy Convers Manag 73:245–255. https://doi.org/10.1016/J.ENCONMAN.2013.04.011

    Article  Google Scholar 

  35. M Maszewska A Florowska K Marciniak-LukasiakZbikowska A˙ 2018 Oxidative stability of selected edible oils Molecules https://doi.org/10.3390/molecules23071746

  36. Parker TD, Adams DA, Zhou K, et al (2003) Fatty acid composition and oxidative stability of cold-pressed edible seed oils. 1240 J FOOD Sci 68:

  37. Choe E, Min DB (2006) Mechanisms and factors for edible oil oxidation. Compr Rev Food Sci Food Saf 5:169–186. https://doi.org/10.1111/J.1541-4337.2006.00009.X

    Article  Google Scholar 

  38. Gertz C, Klostermann S, Kochlar SP (2000) Testing and comparing oxidative stability of vegetable oils and fats at frying temperature | Enhanced Reader. Eur J Lipids Sci Technol 102:543–551

    Article  Google Scholar 

  39. Kamal-Eldin A (2006) Effect of fatty acids and tocopherols on the oxidative stability of vegetable oils. Eur J Lipid Sci Technol 108:1051–1061. https://doi.org/10.1002/EJLT.200600090

    Article  Google Scholar 

  40. EG Jones LM Balster 2000 Interaction of a synthetic hindered-phenol with natural fuel antioxidants in the autoxidation of paraffinshttps://doi.org/10.1021/ef990216q

  41. Bär F, Hopf H, Knorr M, Krahl J (2018) Rancimat and PetroOxy oxidation stability measurements of rapeseed oil methyl ester stabilized with hydrazides and antioxidants

  42. Agarwal AK, Khurana D, Dhar A (2015) Improving oxidation stability of biodiesels derived from Karanja, Neem and Jatropha: step forward in the direction of commercialisation. J Clean Prod 107:646–652. https://doi.org/10.1016/J.JCLEPRO.2015.05.055

    Article  Google Scholar 

  43. Maglinao R, Wagner TJ, Duff K (2020) Effects of temperature, antioxidants and high-vacuum distillation on the oxidation of biodiesel derived from waste vegetable oil. J Am Oil Chem Soc 97:1011–1020. https://doi.org/10.1002/aocs.12391

    Article  Google Scholar 

  44. Knothe G (2003) Dunn RO (2003) Dependence of oil stability index of fatty compounds on their structure and concentration and presence of metals. J Am Oil Chem Soc 8010(80):1021–1026. https://doi.org/10.1007/S11746-003-0814-X

    Article  Google Scholar 

  45. Miyagawa Y, Yoshida M, Adachi S (2020) Crystallisation kinetics of rice bran and soybean oils during storage at low temperature. Food Bioprod Process 120:123–130. https://doi.org/10.1016/J.FBP.2019.12.011

    Article  Google Scholar 

  46. Giakoumis EG (2018) Analysis of 22 vegetable oils’ physico-chemical properties and fatty acid composition on a statistical basis, and correlation with the degree of unsaturation. Renew Energy 126:403–419. https://doi.org/10.1016/J.RENENE.2018.03.057

    Article  Google Scholar 

  47. Kamalakar K, Rajak AK, Prasad RBN, Karuna MSL (2013) Rubber seed oil-based biolubricant base stocks: a potential source for hydraulic oils. Ind Crops Prod 51:249–257. https://doi.org/10.1016/J.INDCROP.2013.08.058

    Article  Google Scholar 

  48. Gunam Resul MFM, Tinia TI, Idris A (2012) Kinetic study of jatropha biolubricant from transesterification of jatropha curcas oil with trimethylolpropane: effects of temperature. Ind Crops Prod 38:87–92. https://doi.org/10.1016/J.INDCROP.2012.01.012

    Article  Google Scholar 

  49. TIM Ghazi MFMG Resul A Idris 2009 Bioenergy II: production of biodegradable lubricant from Jatrophacurcas and trimethylolpropane Int J Chem React Eng 7 https://doi.org/10.2202/1542-6580.1957

  50. Gryglewicz S, Muszyński M, Nowicki J (2013) Enzymatic synthesis of rapeseed oil-based lubricants. Ind Crops Prod 45:25–29. https://doi.org/10.1016/J.INDCROP.2012.11.038

    Article  Google Scholar 

  51. Koh MY, Tinia TI, Idris A (2014) Synthesis of palm based biolubricant in an oscillatory flow reactor (OFR). Ind Crops Prod 52:567–574. https://doi.org/10.1016/J.INDCROP.2013.10.042

    Article  Google Scholar 

  52. Nogales-Delgado S, Encinar JM, González Cortés Á (2021) High oleic safflower oil as a feedstock for stable biodiesel and biolubricant production. Ind Crops Prod 170:113701. https://doi.org/10.1016/J.INDCROP.2021.113701

    Article  Google Scholar 

  53. J Nie J Shen Y Shim et al 2019 Synthesis of trimethylolpropane esters by base-catalyzed transesterificationhttps://doi.org/10.1002/ejlt.201900207

  54. Bahadi M, Salimon J, Derawi D (2021) Synthesis of di-trimethylolpropane tetraester-based biolubricant from Elaeis guineensis kernel oil via homogeneous acid-catalyzed transesterification. Renew Energy 171:981–993. https://doi.org/10.1016/J.RENENE.2021.02.163

    Article  Google Scholar 

  55. Bockisch M (1998) Fats and oils handbook. Elsevier

    Google Scholar 

  56. Yunus R, Fakhru’l-Razi A, Ooi TL, et al (2005) Synthesis of palm oil based trimethylolpropane esters with improved pour points. https://doi.org/10.1021/ie050530

  57. Kamalakar K, V T Sai Manoj GN, N Prasad RB, L Karuna MS (2014) Novel acyloxy derivatives of branched mono-and polyol esters of sal fat: multiviscosity grade lubricant base stocks. https://doi.org/10.1021/jf504700m

  58. Tan SG, Chow WS (2010) Biobased epoxidized vegetable oils and its greener epoxy blends: a review. 49:1581–1590. https://doi.org/10.1080/03602559.2010.512338

  59. Hilker I, Bothe D, Prüss J, Warnecke HJ (2001) Chemo-enzymatic epoxidation of unsaturated plant oils. Chem Eng Sci 56:427–432. https://doi.org/10.1016/S0009-2509(00)00245-1

    Article  Google Scholar 

  60. Moser BR, Brajendra AE, Sharma K, et al Diesters from oleic acid: synthesis, low temperature properties, and oxidation stability. https://doi.org/10.1007/s11746-007-1083-z

  61. Salih N, Salimon J, Yousif E (2011) The physicochemical and tribological properties of oleic acid based triester biolubricants. Ind Crops Prod 34:1089–1096. https://doi.org/10.1016/J.INDCROP.2011.03.025

    Article  Google Scholar 

  62. Sammaiah A, Padmaja KV, Prasad RBN (2014) Synthesis of epoxy jatropha oil and its evaluation for lubricant properties. J Oleo Sci 63:637–643. https://doi.org/10.5650/JOS.ESS13172

    Article  Google Scholar 

  63. J S, N S, E Y, (2011) Synthesis, characterization and physicochemical properties of oleic acid ether derivatives as biolubricant basestocks. J Oleo Sci 60:613–618. https://doi.org/10.5650/JOS.60.613

    Article  Google Scholar 

  64. Kousaalya AB, Beyene SD, Gopal V et al (2018) Green epoxy synthesized from Perilla frutescens: a study on epoxidation and oxirane cleavage kinetics of high-linolenic oil. Ind Crops Prod 123:25–34. https://doi.org/10.1016/J.INDCROP.2018.06.047

    Article  Google Scholar 

  65. Dinda S, Patwardhan AV, Goud VV, Pradhan NC (2008) Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresour Technol 99:3737–3744. https://doi.org/10.1016/J.BIORTECH.2007.07.015

    Article  Google Scholar 

  66. Somidi AKR, Sharma R V, Dalai AK (2014) Synthesis of epoxidized canola oil using a sulfated-SnO 2 catalyst. https://doi.org/10.1021/ie500493m

  67. Sharma RV, Dalai AK (2013) Synthesis of bio-lubricant from epoxy canola oil using sulfated Ti-SBA-15 catalyst. Appl Catal B Environ 142–143:604–614. https://doi.org/10.1016/J.APCATB.2013.06.001

    Article  Google Scholar 

  68. Petrović ZS, Zlatanić A, Lava CC, Sinadinović-Fišer S (2002) Epoxidation of soybean oil in toluene with peroxoacetic and peroxoformic acids — kinetics and side reactions -. Eur J Lipid Sci Technol 104:293–299

    Article  Google Scholar 

  69. Sun S, Yang G, Bi Y (2011) Liang H (2011) Enzymatic epoxidation of corn oil by perstearic acid. J Am Oil Chem Soc 8810(88):1567–1571. https://doi.org/10.1007/S11746-011-1820-1

    Article  Google Scholar 

  70. Hwang H-S (2001) Erhan SZ (2001) Modification of epoxidized soybean oil for lubricant formulations with improved oxidative stability and low pour point. J Am Oil Chem Soc 7812(78):1179–1184. https://doi.org/10.1007/S11745-001-0410-0

    Article  Google Scholar 

  71. Erhan SZ, Sharma BK, Liu Z, Adhvaryu A (2008) Lubricant base stock potential of chemically modified vegetable oils. J Agric Food Chem 56:8919–8925. https://doi.org/10.1021/JF801463D

    Article  Google Scholar 

  72. J S N S BM A 2011 Improvement of physicochemical characteristics of monoepoxide linoleic acid ring opening for biolubricant base oil J Biomed Biotechnol 2011 https://doi.org/10.1155/2011/196565

  73. Zhang H, Olson DJH, Van D et al (2012) Rapid identification of triacylglycerol-estolides in plant and fungal oils. Ind Crops Prod 37:186–194. https://doi.org/10.1016/J.INDCROP.2011.10.026

    Article  Google Scholar 

  74. Modak SN, Kane JG Studies in estolides. I. Kinetics formation and decomposition of estolide

  75. Cermak SC, Brandon KB, Isbell TA (2006) Synthesis and physical properties of estolides from lesquerella and castor fatty acid esters. Ind Crops Prod 23:54–64. https://doi.org/10.1016/J.INDCROP.2005.04.001

    Article  Google Scholar 

  76. García-Zapateiro LA, Franco JM, Valencia C et al (2013) Viscous, thermal and tribological characterization of oleic and ricinoleic acids-derived estolides and their blends with vegetable oils. J Ind Eng Chem 19:1289–1298. https://doi.org/10.1016/J.JIEC.2012.12.030

    Article  Google Scholar 

  77. Erhan SM, Kleiman R (1993) Isbell TA (1993) Estolides from meadowfoam oil fatty acids and other monounsaturated fatty acids. J Am Oil Chem Soc 705(70):461–465. https://doi.org/10.1007/BF02542576

    Article  Google Scholar 

  78. Cermak SC, Isbell TA, Evangelista RL, Johnson BL (2011) Synthesis and physical properties of petroselinic based estolide esters. Ind Crops Prod 33:132–139. https://doi.org/10.1016/J.INDCROP.2010.09.012

    Article  Google Scholar 

  79. Isbell TA, Kleiman R (1994) Plattner BA (1994) Acid-catalyzed condensation of oleic acid into estolides and polyestolides. J Am Oil Chem Soc 712(71):169–174. https://doi.org/10.1007/BF02541552

    Article  Google Scholar 

  80. Vijayendran B (2014) Biobased motor oils are ready for primetime. Ind Biotechnol 10:64–68

    Article  Google Scholar 

  81. Calumet Specialty Products acquires Biosynthetic Technologies - F&L Asia. https://www.fuelsandlubes.com/calumet-specialty-products-acquires-biosynthetic-technologies/. Accessed 26 Oct 2021

  82. Vougioukalakis GC, Grubbs RH (2009) Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts†. Chem Rev 110:1746–1787. https://doi.org/10.1021/CR9002424

    Article  Google Scholar 

  83. AK Chatterjee DP Sanders Grubbs* RH 2002 Synthesis of symmetrical trisubstituted olefins by cross metathesis Org Lett 4 1939 1942 https://doi.org/10.1021/OL0259793

  84. E Helen Blackwell †, Daniel J. O’Leary ‡, Arnab K. Chatterjee † et al 1999 New approaches to olefin cross-metathesis J Am ChemSoc 122 58 71 https://doi.org/10.1021/JA993063U

  85. Mol JC (2004) Industrial applications of olefin metathesis. J Mol Catal A Chem 213:39–45. https://doi.org/10.1016/J.MOLCATA.2003.10.049

    Article  Google Scholar 

  86. Jenkins RW, Sargeant LA, Whiffin FM et al (2015) Cross-metathesis of microbial oils for the production of advanced biofuels and chemicals. ACS Sustain Chem Eng 3:1526–1535. https://doi.org/10.1021/ACSSUSCHEMENG.5B00228

    Article  Google Scholar 

  87. G Kegel J Windy Boy RL Maglinao MJ Abedin 2017 MSU-Northern Bio-Energy Center of Excellence https://doi.org/10.2172/1345395

  88. AK Chatterjee T-L Choi DP Sanders Grubbs RH 2003 A general model for selectivity in olefin cross metathesis J Am Chem Soc 125 11360 11370 https://doi.org/10.1021/JA0214882

  89. MDR Schwan AL 1996 Transamination studies on N-(1-Alkenylthio)phthalimides and related compounds. Synthesis of 1-alkenesulfenamides and 1-alkenesulfonamides1 J Org Chem 61 4232 4239 https://doi.org/10.1021/JO9522163

  90. D Borah S Gopalakrishnan T Nooruddin 2021 Carbohydrate biolubricants from algae and cyanobacteria J Polym Environ https://doi.org/10.1007/s10924-021-02144-z

  91. S Wu qing Cai Z zhe Niu Y et al 2017 A renewable lipid source for biolubricant feedstock oil from housefly (Musca domestica) larva Renew Energy 113 546 553 https://doi.org/10.1016/j.renene.2017.05.094

  92. Kingsley M (2021) The use of alternative feedstocks as renewable and biodegradable lubricants. Lube Mag 24–28

  93. Kim S, Quiroz-Arita C, Monroe EA et al (2021) Application of attached algae flow-ways for coupling biomass production with the utilization of dilute non-point source nutrients in the Upper Laguna Madre. TX Water Res 191:116816. https://doi.org/10.1016/J.WATRES.2021.116816

    Article  Google Scholar 

  94. L Bitonto di S Todisco V Gallo C Pastore 2020 Urban sewage scum and primary sludge as profitable sources of biodiesel and biolubricants of new generation BioresourTechnol Reports 9 https://doi.org/10.1016/j.biteb.2020.100382

  95. Papadaki A, Fernandes KV, Chatzifragkou A et al (2018) Bioprocess development for biolubricant production using microbial oil derived via fermentation from confectionery industry wastes. Bioresour Technol 267:311–318. https://doi.org/10.1016/j.biortech.2018.07.016

    Article  Google Scholar 

  96. R Yunus Fakhru’l-Razi A, Ooi TL et al 2004 Lubrication properties of trimethylolpropane esters based on palm oil and palm kernel oils Eur J Lipid Sci Technol 106 52 60 https://doi.org/10.1002/EJLT.200300862

  97. Athar M, Zaidi S (2020) A review of the feedstocks, catalysts, and intensification techniques for sustainable biodiesel production. J Environ Chem Eng 8:104523. https://doi.org/10.1016/J.JECE.2020.104523

    Article  Google Scholar 

  98. Aguieiras ÉCG, Cavalcanti EDC, da Silva PR et al (2020) Enzymatic synthesis of neopentyl glycol-bases biolubricants using biodiesel from soybean and castor bean as raw materials. Renew Energy 148:689–696. https://doi.org/10.1016/J.RENENE.2019.10.156

    Article  Google Scholar 

  99. Ranganathan SV, Narasimhan SL, Muthukumar K (2008) An overview of enzymatic production of biodiesel. Bioresour Technol 99:3975–3981. https://doi.org/10.1016/J.BIORTECH.2007.04.060

    Article  Google Scholar 

  100. Barbosa MS, Freire CCC, Brandão LMS et al (2021) Biolubricant production under zero-waste Moringa oleifera Lam biorefinery approach for boosting circular economy. Ind Crops Prod 167:113542. https://doi.org/10.1016/J.INDCROP.2021.113542

    Article  Google Scholar 

  101. Carvalho WCA, Luiz JHH, Fernandez-Lafuente R, et al (2021) Eco-friendly production of trimethylolpropane triesters from refined and used soybean cooking oils using an immobilized low-cost lipase (Eversa>® Transform 2.0) as heterogeneous catalyst. Biomass Bioenergy 155:106302. https://doi.org/10.1016/J.BIOMBIOE.2021.106302

  102. Ghafar F, Sapawe N, Dzazita Jemain E et al (2019) Study on the potential of waste cockle shell derived calcium oxide for biolubricant production. Mater Today Proc 19:1346–1353. https://doi.org/10.1016/j.matpr.2019.11.148

    Article  Google Scholar 

  103. Resurreccion EP, Roostaei J, Martin MJ et al (2021) The case for camelina-derived aviation biofuel: sustainability underpinnings from a holistic assessment approach. Ind Crops Prod 170:113777. https://doi.org/10.1016/J.INDCROP.2021.113777

    Article  Google Scholar 

  104. Allen DP, Van WMM, Grubbs RH (2009) Well-defined silica-supported olefin metathesis catalysts. Org Lett 11:1261–1264. https://doi.org/10.1021/OL9000153

    Article  Google Scholar 

  105. M Renom-Carrasco P Mania R Sayah et al 2020 Silica-supported Z-selective Ru olefin metathesis catalysts MolCatal 483 https://doi.org/10.1016/J.MCAT.2019.110743

  106. O Ba H C 2017 Modified N-heterocyclic carbene ligand for the recovery of olefin metathesis catalysts via noncovalent host-guest interactions ACS Omega 2 3951 3957 https://doi.org/10.1021/ACSOMEGA.7B00635

  107. S Nogales-Delgado N Sánchez JM Encinar 2020 Valorization of CynaraCardunculus L. oil as the basis of a biorefinery for biodiesel and biolubricant production Energies 13 13 5085 https://doi.org/10.3390/EN13195085

  108. Nogales-Delgado S, Encinar Martín JM (2021) Cardoon biolubricant through double transesterification: assessment of its oxidative, thermal and storage stability. Mater Lett 302:130454. https://doi.org/10.1016/J.MATLET.2021.130454

    Article  Google Scholar 

  109. Chen J, Bian X, Rapp G et al (2019) From ethyl biodiesel to biolubricants: options for an Indian mustard integrated biorefinery toward a green and circular economy. Ind Crops Prod 137:597–614. https://doi.org/10.1016/J.INDCROP.2019.04.041

    Article  Google Scholar 

  110. Bashiri S, Ghobadian B, Dehghani Soufi M, Gorjian S (2021) Chemical modification of sunflower waste cooking oil for biolubricant production through epoxidation reaction. Mater Sci Energy Technol 4:119–127. https://doi.org/10.1016/J.MSET.2021.03.001

    Article  Google Scholar 

  111. Doll KM, Cermak SC, Kenar JA et al (2017) Derivatization of castor oil based estolide esters: preparation of epoxides and cyclic carbonates. Ind Crops Prod 104:269–277. https://doi.org/10.1016/J.INDCROP.2017.04.061

    Article  Google Scholar 

  112. Hoong SS, Arniza MZ, Mariam NMDNS et al (2019) Synthesis and physicochemical properties of novel lauric acid capped estolide esters and amides made from oleic acid and their evaluations for biolubricant basestock. Ind Crops Prod 140:111653. https://doi.org/10.1016/J.INDCROP.2019.111653

    Article  Google Scholar 

  113. Maglinao RL, Resurreccion EP, Kumar S et al (2019) Hydrodeoxygenation–alkylation pathway for the synthesis of a sustainable lubricant improver from plant oils and lignin-derived phenols. Ind Eng Chem Res 58:4317–4330. https://doi.org/10.1021/ACS.IECR.8B05188

    Article  Google Scholar 

  114. Bian PC, Xu WJ, Gang HZ et al (2017) Insight into the shift and rearrangement of carbocation in Friedel-Crafts alkylation of unsaturated fatty acids revealed by GC–MS. Int J Mass Spectrom 415:85–91. https://doi.org/10.1016/J.IJMS.2017.02.003

    Article  Google Scholar 

  115. Kontham V, Padmaja KV, Madhu D (2020) Synthesis of ricinoleate anion based ionic liquids and their application as green lubricating oil additives. J Saudi Chem Soc 24:742–753. https://doi.org/10.1016/j.jscs.2020.08.003

    Article  Google Scholar 

  116. Kumar Chaurasia S, Kumar Singh N, Kumar Singh L (2020) Friction and wear behavior of chemically modified Sal (Shorea Robusta) oil for bio based lubricant application with effect of CuO nanoparticles. Fuel 282:1–10. https://doi.org/10.1016/j.fuel.2020.118762

    Article  Google Scholar 

  117. Y Singh A Sharma NK Singh MM Noor 2020 Effect of SiC nanoparticles concentration on novel feedstock MoringaOleifera chemically treated with neopentylglycol and their trobological behavior Fuel 280 https://doi.org/10.1016/j.fuel.2020.118630

  118. Singh Y, Singh NK, Sharma A et al (2021) Tribological characteristics of TiO2 nanoparticles as an additive to the chemically modified Nicotiana Tabacum. J Bio- Tribo-Corrosion 7:1–9. https://doi.org/10.1007/s40735-021-00499-3

    Article  Google Scholar 

  119. Talib N, Nasir RM, Rahim EA (2017) Tribological behaviour of modified jatropha oil by mixing hexagonal boron nitride nanoparticles as a bio-based lubricant for machining processes. J Clean Prod 147:360–378. https://doi.org/10.1016/j.jclepro.2017.01.086

    Article  Google Scholar 

  120. Garg P, Kumar A, Thakre GD et al (2017) Investigating efficacy of Cu nano-particles as additive for bio-lubricants. Macromol Symp 376:1–6. https://doi.org/10.1002/masy.201700010

    Article  Google Scholar 

  121. Sarno M, Spina D, Senatore A (2019) One-step nanohybrid synthesis in waste cooking oil, for direct lower environmental impact and stable lubricant formulation. Tribol Int 135:355–367. https://doi.org/10.1016/j.triboint.2019.03.025

    Article  Google Scholar 

  122. JM Liñeiradel Río ER López F García J Fernández 2021 Tribological synergies among chemical-modified graphene oxide nanomaterials and a phosphonium ionic liquid as additives of a biolubricant J Mol Liq 336 https://doi.org/10.1016/j.molliq.2021.116885

  123. Hasnul MH, Zulkifli NWM, Hassan M et al (2021) Synergistic behavior of graphene and ionic liquid as bio-based lubricant additive. Lubricants 9:1–15. https://doi.org/10.3390/lubricants9050046

    Article  Google Scholar 

  124. Singh R, Kukrety A, Chouhan A et al (2017) Recent progress in the preparation of eco-friendly lubricant and fuel additives through organic transformations of biomaterials. Mini Rev Org Chem 14:44–55. https://doi.org/10.2174/1570193x13666161102151906

    Article  Google Scholar 

  125. Delgado MA, Quinchia LA, Spikes HA, Gallegos C (2017) Suitability of ethyl cellulose as multifunctional additive for blends of vegetable oil-based lubricants. J Clean Prod 151:1–9. https://doi.org/10.1016/j.jclepro.2017.03.023

    Article  Google Scholar 

  126. Awang NW, Ramasamy D, Kadirgama K et al (2019) Study on friction and wear of Cellulose Nanocrystal (CNC) nanoparticle as lubricating additive in engine oil. Int J Heat Mass Transf 131:1196–1204. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.128

    Article  Google Scholar 

  127. Li K, Zhang X, Du C et al (2019) Friction reduction and viscosity modification of cellulose nanocrystals as biolubricant additives in polyalphaolefin oil. Carbohydr Polym 220:228–235. https://doi.org/10.1016/j.carbpol.2019.05.072

    Article  Google Scholar 

  128. D Rahmadiawan H Abral N Nasruddin Z Fuadi 2021 Stability, viscosity, and tribology properties of polyol ester oil-based biolubricant filled with TEMPO-oxidized bacterial cellulose nanofiberInt J Polym Sci 2021 https://doi.org/10.1155/2021/5536047

  129. H Zhao J Feng J Zhu et al 2020 Synthesis and application of highly efficient multifunctional vegetable oil additives derived from biophenols J Clean Prod 242 https://doi.org/10.1016/j.jclepro.2019.118274

  130. Kontham V, Ansari KR, Padmaja KV, Madhu D (2021) Synthesis and evaluation of stearic acid based heterocyclic Schiff bases as biolubricant additives in epoxy karanja fatty acid 2-ethyl hexyl esters base oil. Ind Crops Prod 159:113061. https://doi.org/10.1016/j.indcrop.2020.113061

    Article  Google Scholar 

  131. Xu Z, Lou W, Zhao G et al (2019) Pentaerythritol rosin ester as an environmentally friendly multifunctional additive in vegetable oil-based lubricant. Tribol Int 135:213–218. https://doi.org/10.1016/j.triboint.2019.02.038

    Article  Google Scholar 

  132. Reeves CJ, Siddaiah A, Menezes PL (2017) Ionic liquids: a plausible future of bio-lubricants. J Bio- Tribo-Corrosion 3:1–8. https://doi.org/10.1007/s40735-017-0076-1

    Article  Google Scholar 

  133. Nagendramma P, Khatri PK, Thakre GD, Jain SL (2017) Lubrication capabilities of amino acid based ionic liquids as green bio-lubricant additives. J Mol Liq 244:219–225. https://doi.org/10.1016/j.molliq.2017.08.115

    Article  Google Scholar 

  134. Cigno E, Magagnoli C, Pierce MS, Iglesias P (2017) Lubricating ability of two phosphonium-based ionic liquids as additives of a bio-oil for use in wind turbines gearboxes. Wear 376–377:756–765. https://doi.org/10.1016/j.wear.2017.01.010

    Article  Google Scholar 

  135. Reeves CJ, Siddaiah A, Menezes PL (2019) Friction and wear behavior of environmentally friendly ionic liquids for sustainability of biolubricants. J Tribol 141:1–11. https://doi.org/10.1115/1.4042872

    Article  Google Scholar 

  136. Reeves CJ, Kasar AK, Menezes PL (2021) Tribological performance of environmental friendly ionic liquids for high-temperature applications. J Clean Prod 279:123666. https://doi.org/10.1016/j.jclepro.2020.123666

    Article  Google Scholar 

  137. M Sernaglia D Blanco AH Battez et al 2020 Two fatty acid anion-based ionic liquids - part I: physicochemical properties and tribological behavior as neat lubricants J MolLiq 305 https://doi.org/10.1016/j.molliq.2020.112827

  138. MD Avilés FJ Carrión J Sanes MD Bermúdez 2021 Bio-based ionic liquid crystal for stainless steel-sapphire high temperature ultralow friction Wear 484–485 https://doi.org/10.1016/j.wear.2021.204020

  139. Zhang S, Ma L, Wen P et al (2018) The ecotoxicity and tribological properties of choline amino acid ionic liquid lubricants. Tribol Int 121:435–441. https://doi.org/10.1016/j.triboint.2018.01.063

    Article  Google Scholar 

  140. M Björling S Bair L Mu et al 2017 Elastohydrodynamic performance of a bio-based, non-corrosive ionic liquid ApplSci 7 https://doi.org/10.3390/app7100996

  141. L Zhu J Dong Q Zeng et al 2021 A comprehensive study of amino acids based ionic liquids as green lubricants for various contacts TribolInt 162 https://doi.org/10.1016/j.triboint.2021.107137

  142. H Guo AR Adukure P Iglesias 2019 Effect of ionicity of three protic ionic liquids as neat lubricants and lubricant additives to a biolubricant Coatings 9 https://doi.org/10.3390/coatings9110713

  143. H Guo TW Smith P Iglesias 2020 The study of hexanoate-based protic ionic liquids used as lubricants in steel-steel contact J MolLiq 299 https://doi.org/10.1016/j.molliq.2019.112208

  144. Zhang Y, Cai T, Shang W et al (2017) Environmental friendly polyisobutylene-based ionic liquid containing chelated orthoborate as lubricant additive: synthesis, tribological properties and synergistic interactions with ZDDP in hydrocarbon oils. Tribol Int 115:297–306. https://doi.org/10.1016/j.triboint.2017.05.038

    Article  Google Scholar 

  145. N Rivera D Blanco JL Viesca et al 2019 Tribological performance of three fatty acid anion-based ionic liquids (FAILs) used as lubricant additive J MolLiq 296 https://doi.org/10.1016/j.molliq.2019.111881

  146. Gusain R, Khan A, Khatri OP (2020) Fatty acid-derived ionic liquids as renewable lubricant additives: effect of chain length and unsaturation. J Mol Liq 301:9–17. https://doi.org/10.1016/j.molliq.2019.112322

    Article  Google Scholar 

  147. Saha B, Vlachos DG (2021) Synthesis of (hemi)cellulosic lubricant base oilsviacatalytic coupling and deoxygenation pathways. Green Chem 23:4916–4930. https://doi.org/10.1039/d1gc00429h

    Article  Google Scholar 

  148. Menkiti MC, Ocheje O, Agu CM (2017) Production of environmentally adapted lubricant basestock from jatropha curcas specie seed oil. Int J Ind Chem 8:133–144. https://doi.org/10.1007/s40090-017-0116-1

    Article  Google Scholar 

  149. Zheng T, Wu Z, Xie Q et al (2018) Biolubricant production of 2-ethylhexyl palmitate by transesterification over unsupported potassium carbonate. JAOCS, J Am Oil Chem Soc 95:79–88. https://doi.org/10.1002/aocs.12023

    Article  Google Scholar 

  150. MS Elmelawy A El-Meligy HA Mawgoud et al 2021 Synthesis and kinetics study of trimethylolpropane fatty acid triester from oleic acid methyl ester as potential biolubricant Biomass Convers Biorefineryhttps://doi.org/10.1007/s13399-020-01220-z

  151. JM Encinar S Nogales-Delgado A Pinilla 2021Biolubricant production through double transesterification: reactor design for the implementation of a biorefinery based on rapeseed Processes 9 https://doi.org/10.3390/pr9071224

  152. Narayan RC, Lamba N, Javed A, Madras G (2017) Kinetics of esterification of 10-undecenoic and ricinoleic acids with near-critical and supercritical methanol. Sustain Energy Fuels 1:1425–1436. https://doi.org/10.1039/C7SE00258K

    Article  Google Scholar 

  153. R Tesser V Russo R Turco et al 2020 Bio-lubricants synthesis from the epoxidized oil promoted by clays: kinetic modellingChem Eng Sci 214 https://doi.org/10.1016/j.ces.2019.115445

  154. Chen S, Zhao C (2021) Production of highly symmetrical and branched biolubricants from lignocellulose-derived furan compounds. ACS Sustain Chem Eng 9:10818–10826. https://doi.org/10.1021/acssuschemeng.1c02875

    Article  Google Scholar 

  155. M DehghaniSoufi B Ghobadian SM Mousavi et al 2019 Valorization of waste cooking oil based biodiesel for biolubricant production in a vertical pulsed column: energy efficient process approach Energy 189 https://doi.org/10.1016/j.energy.2019.116266

  156. Diaz PAB, de Kronemberger F, A, Habert AC, (2017) A pervaporation-assisted bioreactor to enhance efficiency in the synthesis of a novel biolubricant based on the enzymatic transesterification of a castor oil based biodiesel. Fuel 204:98–105. https://doi.org/10.1016/j.fuel.2017.05.025

    Article  Google Scholar 

  157. Hussein RZK, Attia NK, Fouad MK, ElSheltawy ST (2021) Experimental investigation and process simulation of biolubricant production from waste cooking oil. Biomass Bioenerg 144:6–8. https://doi.org/10.1016/j.biombioe.2020.105850

    Article  Google Scholar 

  158. Riazi B, Zhang J, Yee W et al (2019) Life cycle environmental and cost implications of isostearic acid production for pharmaceutical and personal care products. ACS Sustain Chem Eng 7:15247–15258. https://doi.org/10.1021/acssuschemeng.9b02238

    Article  Google Scholar 

  159. A Athaley B Saha M Ierapetritou 2019 Biomass-based chemical production using techno-economic and life cycle analysis AIChE J 65 https://doi.org/10.1002/aic.16660

  160. Global Industry Analyst Inc. 2021 Biolubricants: global market trajectory & analytics. Report No. MCP-6397. https://www.strategyr.com/market-report-biolubricants-forecasts-global-industry-analysts-inc.asp. Accessed 16 Jan 2022

Download references

Acknowledgements

The authors greatly appreciated the financial support from the Bioprocessing and Bioengineering program (grant no. 2019-67022-29947/project accession no. 1019914) from the USDA National Institute of Food and Agriculture. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Funding

The study was supported by Bioprocessing and Bioengineering program (grant no. 2019-67022-29947/project accession no. 1019914) from the USDA National Institute of Food and Agriculture.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception. Elena Barbera, Kyoko Hirayama, and Randy Maglinao performed the literature search and data analysis, and drafted the manuscript. Ryan Davis critically revised the work. Sandeep Kumar supervised and critically revised the work.

Corresponding author

Correspondence to Sandeep Kumar.

Ethics declarations

Ethical statement

The authors declare that the work was carried out in compliance with ethical standards.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbera, E., Hirayama, K., Maglinao, R.L. et al. Recent developments in synthesizing biolubricants — a review. Biomass Conv. Bioref. 14, 2867–2887 (2024). https://doi.org/10.1007/s13399-022-02438-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02438-9

Keywords

Navigation