Skip to main content
Log in

Biolubricant Production from Several Oleaginous Feedstocks Using Lipases as Catalysts: Current Scenario and Future Perspectives

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

In recent years, biolubricants have been gaining further prominence than conventional petroleum-based lubricants. This trend is observed in almost all sectors relying on these products, regardless of their applications. Environmental problems caused by coventional lubricants and the depletion of oil reserves that have led to the need for renewable and biodegradable lubricants are among the factors that contribute to such growing trend. Biolubricants have several advantages over mineral oil lubricants such as high biodegradability, low toxicity, excellent lubricating performance, and minimal impact on the environment and human health. In addition, they can be produced using several types of oleaginous feedstocks and distinct chemical reactions that can be efficiently catalyzed by lipases, which make them quite attractive in the context of Green Chemistry. Thereby, this review describes different aspects of biolubricants by detailing their main applications, properties, uses, and potential feedstocks such as vegetable oils. In this review, chemical modification of their structures using different routes has been highlighted in order to overcome a few limitations for direct application of oleaginuous feedstocks as biolubricants. It also depicts the progress of enzymatic catalysis and immobilization protocols for preparing heterogenous biocatalysts (immobilized lipases), once it is a promising route to obtain a variety of biolubricants based on recent studies described in available literature. Furthermore, future prospects and challenges for enzymatic biolubricant production on an industrial scale are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BCL:

Lipase from Burkholderia cepacia

CALB:

Lipase B from Candida antarctica

CLEAs:

Cross-linked enzyme aggregates

CME:

Castor bean methyl esters

CRL:

Lipase from Candida rugosa

CSTR:

Continuous stirred-tank reactor

FBR:

Fluidized-bed reactor

FFA:

Free fatty acids

NPG:

Neopentylglycol

PVA/PES:

Polyvinyl alcohol/polyethersulfone

PBR:

Packed-bed reactor

PE:

Pentaerythritol

RAL:

Lipase from Rhizopus arrhizus

SME:

Soybean methyl esters

STR:

Stirred-tank reactor

TAG:

Triacylglycerols

TLL:

Lipase from Thermomyces lanuginosus

TMP:

Trimethylolpropane

USDA:

US Department of Agriculture

WCO:

Waste cooking oil

References

  1. Reeves CJ, Siddaiah A, Menezes PL (2017) A review on the science and technology of natural and synthetic biolubricants. J Bio- Tribo-Corrosion 3:1–27. https://doi.org/10.1007/s40735-016-0069-5

    Article  Google Scholar 

  2. Syahir AZ, Zulkifli NWM, Masjuki HH et al (2017) A review on bio-based lubricants and their applications. J Clean Prod 168:997–1016. https://doi.org/10.1016/j.jclepro.2017.09.106

    Article  CAS  Google Scholar 

  3. Chan CH, Tang SW, Mohd NK et al (2018) Tribological behavior of biolubricant base stocks and additives. Renew Sustain Energy Rev 93:145–157. https://doi.org/10.1016/j.rser.2018.05.024

    Article  CAS  Google Scholar 

  4. Zainal NA, Zulkifli NWM, Gulzar M, Masjuki HH (2018) A review on the chemistry, production, and technological potential of bio-based lubricants. Renew Sustain Energy Rev 82:80–102. https://doi.org/10.1016/j.rser.2017.09.004

    Article  CAS  Google Scholar 

  5. Grand View Research I and its A Grand View Research, Inc. and its Affiliates. https://www.grandviewresearch.com/industry-analysis/lubricants-market. Accessed 25 Jan 2020

  6. Statista (2020) Market volume of lubricants worldwide in 2019, by leading country. https://www.statista.com/statistics/821076/lubricants-global-market-volume-by-country/. Accessed 28 Jul 2020

  7. Mobarak HM, Niza Mohamad E, Masjuki HH et al (2014) The prospects of biolubricants as alternatives in automotive applications. Renew Sustain Energy Rev 33:34–43. https://doi.org/10.1016/j.rser.2014.01.062

    Article  CAS  Google Scholar 

  8. Ho CK, McAuley KB, Peppley BA (2019) Biolubricants through renewable hydrocarbons: a perspective for new opportunities. Renew Sustain Energy Rev 113:109261. https://doi.org/10.1016/j.rser.2019.109261

    Article  CAS  Google Scholar 

  9. Cecilia JA, Plata DB, Saboya RMA et al (2020) An overview of the biolubricant production process: challenges and future perspectives. Processes 8:1–24. https://doi.org/10.3390/pr8030257

    Article  CAS  Google Scholar 

  10. Karmakar G, Ghosh P, Sharma BK (2017) Chemically modifying vegetable oils to prepare green lubricants. Lubricants 5:1–17. https://doi.org/10.3390/lubricants5040044

    Article  Google Scholar 

  11. McNutt J, He QS (2016) Development of biolubricants from vegetable oils via chemical modification. J Ind Eng Chem 36:1–12. https://doi.org/10.1016/j.jiec.2016.02.008

    Article  CAS  Google Scholar 

  12. Da Silva APT, Bredda EH, de Castro HF, Da Rós PCM (2020) Enzymatic catalysis: an environmentally friendly method to enhance the transesterification of microalgal oil with fusel oil for production of fatty acid esters with potential application as biolubricants. Fuel 273:117786. https://doi.org/10.1016/j.fuel.2020.117786

    Article  CAS  Google Scholar 

  13. Papadaki A, Fernandes KV, Chatzifragkou A et al (2018) Bioprocess development for biolubricant production using microbial oil derived via fermentation from confectionery industry wastes. Bioresour Technol 267:311–318. https://doi.org/10.1016/j.biortech.2018.07.016

    Article  CAS  PubMed  Google Scholar 

  14. Panchal TM, Patel A, Chauhan DD et al (2017) A methodological review on bio-lubricants from vegetable oil based resources. Renew Sustain Energy Rev 70:65–70. https://doi.org/10.1016/j.rser.2016.11.105

    Article  CAS  Google Scholar 

  15. Saboya RMA, Cecilia JA, García-Sancho C et al (2017) Synthesis of biolubricants by the esterification of free fatty acids from castor oil with branched alcohols using cationic exchange resins as catalysts. Ind Crops Prod 104:52–61. https://doi.org/10.1016/j.indcrop.2017.04.018

    Article  CAS  Google Scholar 

  16. Saboya RMA, Cecilia JA, García-Sancho C et al (2016) WO3-based catalysts supported on porous clay heterostructures (PCH) with Si-Zr pillars for synthetic esters production. Appl Clay Sci 124–125:69–78. https://doi.org/10.1016/j.clay.2016.02.004

    Article  CAS  Google Scholar 

  17. Ivan-Tan CT, Islam A, Yunus R, Taufiq-Yap YH (2017) Screening of solid base catalysts on palm oil based biolubricant synthesis. J Clean Prod 148:441–451. https://doi.org/10.1016/j.jclepro.2017.02.027

    Article  CAS  Google Scholar 

  18. Ghafar F, Sapawe N, Dzazita Jemain E et al (2019) Study on The potential of waste cockle shell derived calcium oxide for biolubricant production. Mater Today Proc 19:1346–1353. https://doi.org/10.1016/j.matpr.2019.11.148

    Article  CAS  Google Scholar 

  19. Bassi JJ, Todero LM, Lage FAP et al (2016) Interfacial activation of lipases on hydrophobic support and application in the synthesis of a lubricant ester. Int J Biol Macromol 92:900–909. https://doi.org/10.1016/j.ijbiomac.2016.07.097

    Article  CAS  PubMed  Google Scholar 

  20. Lage FAP, Bassi JJ, Corradini MCC et al (2016) Preparation of a biocatalyst via physical adsorption of lipase from Thermomyces lanuginosus on hydrophobic support to catalyze biolubricant synthesis by esterification reaction in a solvent-free system. Enzyme Microb Technol 84:56–67. https://doi.org/10.1016/j.enzmictec.2015.12.007

    Article  CAS  PubMed  Google Scholar 

  21. Cerón AA, Vilas Boas RN, Biaggio FC, de Castro HF (2018) Synthesis of biolubricant by transesterification of palm kernel oil with simulated fusel oil: Batch and continuous processes. Biomass Bioenergy 119:166–172. https://doi.org/10.1016/j.biombioe.2018.09.013

    Article  CAS  Google Scholar 

  22. Papadaki A, Cipolatti EP, Aguieiras ECG et al (2019) Development of microbial oil wax-based oleogel with potential application in food formulations. Food Bioprocess Technol 12:899–909. https://doi.org/10.1007/s11947-019-02257-3

    Article  CAS  Google Scholar 

  23. Sarno M, Iuliano M, Cirillo C (2019) Optimized procedure for the preparation of an enzymatic nanocatalyst to produce a bio-lubricant from waste cooking oil. Chem Eng J 377:120273. https://doi.org/10.1016/j.cej.2018.10.210

    Article  CAS  Google Scholar 

  24. Aguieiras ÉCG, Cavalcanti EDC, da Silva PR et al (2020) Enzymatic synthesis of neopentyl glycol-bases biolubricants using biodiesel from soybean and castor bean as raw materials. Renew Energy 148:689–696. https://doi.org/10.1016/j.renene.2019.10.156

    Article  CAS  Google Scholar 

  25. Adlercreutz P (2013) Immobilisation and application of lipases in organic media. Chem Soc Rev 42:6406–6436. https://doi.org/10.1039/c3cs35446f

    Article  CAS  PubMed  Google Scholar 

  26. Mulinari J, Oliveira JV, Hotza D (2020) Lipase immobilization on ceramic supports: An overview on techniques and materials. Biotechnol Adv 42:107581. https://doi.org/10.1016/j.biotechadv.2020.107581

    Article  CAS  PubMed  Google Scholar 

  27. Zhao Z, Zhou MC, Liu RL (2019) Recent developments in carriers and non-aqueous solvents for enzyme immobilization. Catalysts 9:1–15. https://doi.org/10.3390/catal9080647

    Article  CAS  Google Scholar 

  28. Zhong L, Feng Y, Wang G et al (2020) Production and use of immobilized lipases in/on nanomaterials: a review from the waste to biodiesel production. Int J Biol Macromol 152:207–222. https://doi.org/10.1016/j.ijbiomac.2020.02.258

    Article  CAS  PubMed  Google Scholar 

  29. Bahadi M, Yusoff MF, Salimon J, Derawi D (2019) Optimization of response surface methodology by D-optimal design for synthesis of food-grade palm kernel based biolubricant. Ind Crops Prod 139:111452. https://doi.org/10.1016/j.indcrop.2019.06.015

    Article  CAS  Google Scholar 

  30. Singh Y, Sharma A, Singla A (2019) Non-edible vegetable oil–based feedstocks capable of bio-lubricant production for automotive sector applications—a review. Environ Sci Pollut Res 26:14867–14882. https://doi.org/10.1007/s11356-019-05000-9

    Article  CAS  Google Scholar 

  31. Yao L, Hammond EG, Wang T et al (2014) Physical and monolayer film properties of potential fatty ester biolubricants. Eur J Lipid Sci Technol 116:910–917. https://doi.org/10.1002/ejlt.201400013

    Article  CAS  Google Scholar 

  32. Åkerman CO, Gaber Y, Ghani NA et al (2011) Clean synthesis of biolubricants for low temperature applications using heterogeneous catalysts. J Mol Catal B Enzym 72:263–269. https://doi.org/10.1016/j.molcatb.2011.06.014

    Article  CAS  Google Scholar 

  33. Rios ÍC, Cordeiro JP, Arruda TBMG et al (2020) Chemical modification of castor oil fatty acids (Ricinus communis) for biolubricant applications: An alternative for Brazil’s green market. Ind Crops Prod 145:112000. https://doi.org/10.1016/j.indcrop.2019.112000

    Article  CAS  Google Scholar 

  34. Ravi A, Gurunathan B, Rajendiran N et al (2020) Contemporary approaches towards augmentation of distinctive heterogeneous catalyst for sustainable biodiesel production. Environ Technol Innov 19:100906. https://doi.org/10.1016/j.eti.2020.100906

    Article  Google Scholar 

  35. Garcés R, Martínez-Force E, Salas JJ (2011) Vegetable oil basestocks for lubricants. Grasas Aceites 62:21–28. https://doi.org/10.3989/gya.045210

    Article  CAS  Google Scholar 

  36. Miller AL, Stipe CB, Habjan MC, Ahlstrand GG (2007) Role of lubrication oil in particulate emissions from a hydrogen-powered internal combustion engine. Environ Sci Technol 41:6828–6835. https://doi.org/10.1021/es070999r

    Article  CAS  PubMed  Google Scholar 

  37. Alves SM, Barros BS, Trajano MF et al (2013) Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribol Int 65:28–36. https://doi.org/10.1016/j.triboint.2013.03.027

    Article  CAS  Google Scholar 

  38. Transparency Market Research (2018) Biolubricants Market - Global Scenario, Trends, Industry Analysis, Size, Share And Forecast, 2010–2018. https://www.transparencymarketresearch.com/biolubricants-market.html. Accessed 3 Jun 2020

  39. Markets and Markets (2020) Lubricants Market. https://www.marketsandmarkets.com/Market-Reports/lubricants-market-182046896.html. Accessed 3 Jun 2020

  40. Sajeeb A, Rajendrakumar PK (2019) Comparative evaluation of lubricant properties of biodegradable blend of coconut and mustard oil. J Clean Prod 240:118255. https://doi.org/10.1016/j.jclepro.2019.118255

    Article  CAS  Google Scholar 

  41. Atabani AE, Silitonga AS, Ong HC et al (2013) Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renew Sustain Energy Rev 18:211–245. https://doi.org/10.1016/j.rser.2012.10.013

    Article  CAS  Google Scholar 

  42. Da Silva JAC, Soares VF, Fernandez- Lafuente R, et al (2015) Enzymatic production and characterization of potential biolubricants from castor bean biodiesel. J Mol Catal B Enzym 122:323–329. https://doi.org/10.1016/j.molcatb.2015.09.017

  43. WORLD-GRAIN.com (2020) Record soybean crop forecast for Brazil in 2020–21. https://www.world-grain.com/articles/14323-record-soybean-crop-forecast-for-brazil-in-2020-21. Accessed 23 Dez 2020

  44. Statista (2020) Production of major vegetable oils worldwide from 2012/13 to 2019/2020, by type. https://www.statista.com/statistics/263933/production-of-vegetable-oils-worldwide-since-2000/. Accessed 3 Jun 2020

  45. Index Mundi (2020) Agricultural Production, Supply, and Distribution. https://www.indexmundi.com/agriculture/. Accessed 3 Jun 2020

  46. Winayanuwattikun P, Kaewpiboon C, Piriyakananon K et al (2008) Potential plant oil feedstock for lipase-catalyzed biodiesel production in Thailand. Biomass Bioenergy 32:1279–1286. https://doi.org/10.1016/j.biombioe.2008.03.006

    Article  CAS  Google Scholar 

  47. Santos KC, Cassimiro DMJ, Avelar MHM et al (2013) Characterization of the catalytic properties of lipases from plant seeds for the production of concentrated fatty acids from different vegetable oils. Ind Crops Prod 49:462–470. https://doi.org/10.1016/j.indcrop.2013.05.035

    Article  CAS  Google Scholar 

  48. Zhang W, Ji H, Song Y et al (2020) Green preparation of branched biolubricant by chemically modifying waste cooking oil with lipase and ionic liquid. J Clean Prod 274:122918. https://doi.org/10.1016/j.jclepro.2020.122918

    Article  CAS  Google Scholar 

  49. Hamdan SH, Chong WWF, Ng JH et al (2018) Nano-tribological characterisation of palm oil-based trimethylolpropane ester for application as boundary lubricant. Tribol Int 127:1–9. https://doi.org/10.1016/j.triboint.2018.05.036

    Article  CAS  Google Scholar 

  50. Kim H, Choi N, Kim Y et al (2019) Immobilized lipase-catalyzed esterification for synthesis of trimethylolpropane triester as a biolubricant. Renew Energy 130:489–494. https://doi.org/10.1016/j.renene.2018.06.092

    Article  CAS  Google Scholar 

  51. Cavalcanti EDC, Aguieiras ÉCG, da Silva PR et al (2018) Improved production of biolubricants from soybean oil and different polyols via esterification reaction catalyzed by immobilized lipase from Candida rugosa. Fuel 215:705–713. https://doi.org/10.1016/j.fuel.2017.11.119

    Article  CAS  Google Scholar 

  52. Attia NK, El-Mekkawi SA, Elardy OA, Abdelkader EA (2020) Chemical and rheological assessment of produced biolubricants from different vegetable oils. Fuel 271:117578. https://doi.org/10.1016/j.fuel.2020.117578

    Article  CAS  Google Scholar 

  53. Fernandes KV, Cavalcanti EDC, Cipolatti EP et al (2021) Enzymatic synthesis of biolubricants from by-product of soybean oil processing catalyzed by different biocatalysts of Candida rugosa lipase. Catal Today 362:122–129. https://doi.org/10.1016/j.cattod.2020.03.060

    Article  CAS  Google Scholar 

  54. Encinar JM, Nogales-Delgado S, Sánchez N, González JF (2020) Biolubricants from rapeseed and castor oil transesterification by using titanium isopropoxide as a catalyst: production and characterization. Catalysts 10:366. https://doi.org/10.3390/catal10040366

    Article  CAS  Google Scholar 

  55. Ruggiero A, D’Amato R, Merola M et al (2017) Tribological characterization of vegetal lubricants: comparative experimental investigation on Jatropha curcas L. oil, rapeseed methyl ester oil, hydrotreated rapeseed oil. Tribol Int 109:529–540. https://doi.org/10.1016/j.triboint.2017.01.030

    Article  CAS  Google Scholar 

  56. Afifah AN, Syahrullail S, Wan Azlee NI et al (2019) Biolubricant production from palm stearin through enzymatic transesterification method. Biochem Eng J 148:178–184. https://doi.org/10.1016/j.bej.2019.05.009

    Article  CAS  Google Scholar 

  57. Chanes de Souza M, Fracaro de Souza Gonçalves J, Cézar Gonçalves P et al (2019) Use of Jatropha and Moringa oils for lubricants: metalworking fluids more environmental-friendly. Ind Crops Prod 129:594–603. https://doi.org/10.1016/j.indcrop.2018.12.033

    Article  CAS  Google Scholar 

  58. Talib N, Nasir RM, Rahim EA (2017) Tribological behaviour of modified jatropha oil by mixing hexagonal boron nitride nanoparticles as a bio-based lubricant for machining processes. J Clean Prod 147:360–378. https://doi.org/10.1016/j.jclepro.2017.01.086

    Article  CAS  Google Scholar 

  59. Hajar M, Vahabzadeh F (2016) Biolubricant production from castor oil in a magnetically stabilized fluidized bed reactor using lipase immobilized on Fe3O4 nanoparticles. Ind Crops Prod 94:544–556. https://doi.org/10.1016/j.indcrop.2016.09.030

    Article  CAS  Google Scholar 

  60. Doll KM, Cermak SC, Kenar JA et al (2017) Derivatization of castor oil based estolide esters: preparation of epoxides and cyclic carbonates. Ind Crops Prod 104:269–277. https://doi.org/10.1016/j.indcrop.2017.04.061

    Article  CAS  Google Scholar 

  61. Greco-Duarte J, Cavalcanti-Oliveira ED, Da Silva JAC et al (2017) Two-step enzymatic production of environmentally friendly biolubricants using castor oil: enzyme selection and product characterization. Fuel 202:196–205. https://doi.org/10.1016/j.fuel.2017.04.036

    Article  CAS  Google Scholar 

  62. Sun S, Wang G, Wang P (2018) A cleaner approach for biodegradable lubricants production by enzymatic glycerolysis of castor oil and kinetic analysis. J Clean Prod 188:530–535. https://doi.org/10.1016/j.jclepro.2018.04.015

    Article  CAS  Google Scholar 

  63. Saboya RMA, Cecilia JA, García-Sancho C et al (2017) Assessment of commercial resins in the biolubricants production from free fatty acids of castor oil. Catal Today 279:274–285. https://doi.org/10.1016/j.cattod.2016.02.020

    Article  CAS  Google Scholar 

  64. do Valle CP, Rodrigues JS, Fechine LMUD, et al (2018) Chemical modification of Tilapia oil for biolubricant applications. J Clean Prod 191:158–166. https://doi.org/10.1016/j.jclepro.2018.04.062

  65. Angulo B, Fraile JM, Gil L, Herrerías CI (2018) Bio-lubricants production from fish oil residue by transesterification with trimethylolpropane. J Clean Prod 202:81–87. https://doi.org/10.1016/j.jclepro.2018.07.260

    Article  CAS  Google Scholar 

  66. Hernández-Cruz MC, Meza-Gordillo R, Torrestiana-Sánchez B et al (2017) Chicken fat and biodiesel viscosity modification with additives for the formulation of biolubricants. Fuel 198:42–48. https://doi.org/10.1016/j.fuel.2016.12.039

    Article  CAS  Google Scholar 

  67. Aravind A, Joy ML, Nair KP (2015) Lubricant properties of biodegradable rubber tree seed (Hevea brasiliensis Muell. Arg) oil. Ind Crops Prod 74:14–19. https://doi.org/10.1016/j.indcrop.2015.04.014

    Article  CAS  Google Scholar 

  68. Aravind A, Prabhakaran Nair K, Joy ML (2018) Formulation of a novel biolubricant with enhanced properties using esterified rubber seed oil as a base stock. Proc Inst Mech Eng Part J J Eng Tribol 232:1514–1524. https://doi.org/10.1177/1350650118756243

    Article  CAS  Google Scholar 

  69. Silva MS, Foletto EL, Alves SM et al (2015) New hydraulic biolubricants based on passion fruit and moringa oils and their epoxy. Ind Crops Prod 69:362–370. https://doi.org/10.1016/j.indcrop.2015.02.037

    Article  CAS  Google Scholar 

  70. Cantamutto M, Poverene M (2007) Genetically modified sunflower release: Opportunities and risks. F Crop Res 101:133–144. https://doi.org/10.1016/j.fcr.2006.11.007

    Article  Google Scholar 

  71. Fernandes KV, Papadaki A, da Silva JAC et al (2018) Enzymatic esterification of palm fatty-acid distillate for the production of polyol esters with biolubricant properties. Ind Crops Prod 116:90–96. https://doi.org/10.1016/j.indcrop.2018.02.058

    Article  CAS  Google Scholar 

  72. Sripada PK, Sharma RV, Dalai AK (2013) Comparative study of tribological properties of trimethylolpropane-based biolubricants derived from methyl oleate and canola biodiesel. Ind Crops Prod 50:95–103. https://doi.org/10.1016/j.indcrop.2013.07.018

    Article  CAS  Google Scholar 

  73. Heikal EK, Elmelawy MS, Khalil SA, Elbasuny NM (2017) Manufacturing of environment friendly biolubricants from vegetable oils. Egypt J Pet 26:53–59. https://doi.org/10.1016/j.ejpe.2016.03.003

    Article  Google Scholar 

  74. Musa IA (2016) The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egypt J Pet 25:21–31. https://doi.org/10.1016/j.ejpe.2015.06.007

    Article  Google Scholar 

  75. Gupta J, Agarwal M, Dalai AK (2020) An overview on the recent advancements of sustainable heterogeneous catalysts and prominent continuous reactor for biodiesel production. J Ind Eng Chem 88:58–77. https://doi.org/10.1016/j.jiec.2020.05.012

    Article  CAS  Google Scholar 

  76. Angulo B, Fraile JM, Gil L, Herrerías CI (2020) Comparison of chemical and enzymatic methods for the transesterification of waste fish oil fatty ethyl esters with different alcohols. ACS Omega 5:1479–1487. https://doi.org/10.1021/acsomega.9b03147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Oh J, Yang S, Kim C et al (2013) Synthesis of biolubricants using sulfated zirconia catalysts. Appl Catal A Gen 455:164–171. https://doi.org/10.1016/j.apcata.2013.01.032

    Article  CAS  Google Scholar 

  78. Nandiwale KY, Yadava SK, Bokade VV (2014) Production of octyl levulinate biolubricant over modified H-ZSM-5: optimization by response surface methodology. J Energy Chem 23:535–541. https://doi.org/10.1016/S2095-4956(14)60182-0

    Article  Google Scholar 

  79. Ferreira ARO, Silvestre-Albero J, Maier ME et al (2020) Sulfonated activated carbons as potential catalysts for biolubricant synthesis. Mol Catal 488:110888. https://doi.org/10.1016/j.mcat.2020.110888

    Article  CAS  Google Scholar 

  80. Amiril SAS, Rahim EA, Embong Z, Syahrullail S (2018) Tribological investigations on the application of oil-miscible ionic liquids additives in modified Jatropha-based metalworking fluid. Tribol Int 120:520–534. https://doi.org/10.1016/j.triboint.2018.01.030

    Article  CAS  Google Scholar 

  81. Salimon J, Salih N, Yousif E (2011) Chemically modified biolubricant basestocks from epoxidized oleic acid: improved low temperature properties and oxidative stability. J Saudi Chem Soc 15:195–201. https://doi.org/10.1016/j.jscs.2010.08.004

    Article  CAS  Google Scholar 

  82. Turco R, Tesser R, Vitiello R et al (2017) Synthesis of biolubricant basestocks from epoxidized soybean oil. Catalysts 7:309–320. https://doi.org/10.3390/catal7100309

    Article  CAS  Google Scholar 

  83. Tan SG, Chow WS (2010) Biobased epoxidized vegetable oils and its greener epoxy blends: A review. Polym - Plast Technol Eng 49:1581–1590. https://doi.org/10.1080/03602559.2010.512338

    Article  CAS  Google Scholar 

  84. Bressani APP, Garcia KCA, Hirata DB, Mendes AA (2015) Production of alkyl esters from macaw palm oil by a sequential hydrolysis/esterification process using heterogeneous biocatalysts: optimization by response surface methodology. Bioprocess Biosyst Eng 38:287–297. https://doi.org/10.1007/s00449-014-1267-5

    Article  CAS  PubMed  Google Scholar 

  85. Pourzolfaghar H, Abnisa F, Daud WMAW, Aroua MK (2016) A review of the enzymatic hydroesterification process for biodiesel production. Renew Sustain Energy Rev 61:245–257. https://doi.org/10.1016/j.rser.2016.03.048

    Article  CAS  Google Scholar 

  86. de Lacerda JGP, Candeia RA, de Morais Sales LL et al (2019) Characterization of biodiesel from frying oil obtained by hydro-esterification using vermiculite as heterogeneous catalyst. J Therm Anal Calorim 137:2045–2052. https://doi.org/10.1007/s10973-019-08092-0

    Article  CAS  Google Scholar 

  87. dos Santos LK, Hatanaka RR, de Oliveira JE, Flumignan DL (2019) Production of biodiesel from crude palm oil by a sequential hydrolysis/esterification process using subcritical water. Renew Energy 130:633–640. https://doi.org/10.1016/j.renene.2018.06.102

    Article  CAS  Google Scholar 

  88. Moreira KS, Moura LS, Monteiro RRC et al (2020) Optimization of the production of enzymatic biodiesel from residual babassu oil (Orbignya sp.) via RSM. Catalysts 10:414. https://doi.org/10.3390/catal10040414

    Article  CAS  Google Scholar 

  89. Zenevicz MCP, Jacques A, de Oliveira D et al (2017) A two-step enzymatic strategy to produce ethyl esters using frying oil as substrate. Ind Crops Prod 108:52–55. https://doi.org/10.1016/j.indcrop.2017.06.018

    Article  CAS  Google Scholar 

  90. da Silva JAC, Habert AC, Freire DMG (2013) A potential biodegradable lubricant from castor biodiesel esters. Lubr Sci 25:53–61. https://doi.org/10.1002/ls.1205

    Article  CAS  Google Scholar 

  91. Thangaraj B, Jia Z, Dai L et al (2019) Effect of silica coating on Fe3O4 magnetic nanoparticles for lipase immobilization and their application for biodiesel production. Arab J Chem 12:4694–4706. https://doi.org/10.1016/j.arabjc.2016.09.004

    Article  CAS  Google Scholar 

  92. Thangaraj B, Solomon PR (2019) Immobilization of lipases – a review. Part I: Enzyme immobilization. ChemBioEng Rev 6:157–166. https://doi.org/10.1002/cben.201900016

    Article  CAS  Google Scholar 

  93. Kuzminska M, Kovalchuk TV, Backov R, Gaigneaux EM (2014) Immobilizing heteropolyacids on zirconia-modified silica As catalysts for oleochemistry transesterification and esterification reactions. J Catal 320:1–8. https://doi.org/10.1016/j.jcat.2014.09.016

    Article  CAS  Google Scholar 

  94. Gryglewicz S (2000) Alkaline-earth metal compounds as alcoholysis catalysts for ester oils synthesis. Appl Catal A Gen 192:23–28. https://doi.org/10.1016/S0926-860X(99)00337-3

    Article  CAS  Google Scholar 

  95. Masood H, Yunus R, Choong TSY et al (2012) Synthesis and characterization of calcium methoxide as heterogeneous catalyst for trimethylolpropane esters conversion reaction. Appl Catal A Gen 425–426:184–190. https://doi.org/10.1016/j.apcata.2012.03.019

    Article  CAS  Google Scholar 

  96. Filho DG, Silva AG, Guidini CZ (2019) Lipases: sources, immobilization methods, and industrial applications. Appl Microbiol Biotechnol 103:7399–7423. https://doi.org/10.1007/s00253-019-10027-6

    Article  CAS  PubMed  Google Scholar 

  97. Barbosa O, Ortiz C, Berenguer-Murcia Á et al (2014) Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv 4:1583–1600. https://doi.org/10.1039/c3ra45991h

    Article  CAS  Google Scholar 

  98. Angajala G, Pavan P, Subashini R (2016) Lipases: an overview of its current challenges and prospectives in the revolution of biocatalysis. Biocatal Agric Biotechnol 7:257–270. https://doi.org/10.1016/j.bcab.2016.07.001

    Article  Google Scholar 

  99. Ferreira-Leitão VS, Cammarota MC, Aguieiras ECG et al (2017) The protagonism of biocatalysis in green chemistry and its environmental benefits. Catalysts 7:9. https://doi.org/10.3390/catal7010009

    Article  CAS  Google Scholar 

  100. Shuai W, Das RK, Naghdi M et al (2017) A review on the important aspects of lipase immobilization on nanomaterials. Biotechnol Appl Biochem 64:496–508. https://doi.org/10.1002/bab.1515

    Article  CAS  PubMed  Google Scholar 

  101. Javed S, Azeem F, Hussain S, et al (2018) Bacterial lipases: a review on purification and characterization. Prog Biophys Mol Biol 132:23–34.https://doi.org/10.1016/j.pbiomolbio.2017.07.014

  102. Contesini FJ, Lopes DB, MacEdo GA et al (2010) Aspergillus sp. lipase: potential biocatalyst for industrial use. J Mol Catal B Enzym 67:163–171. https://doi.org/10.1016/j.molcatb.2010.07.021

    Article  CAS  Google Scholar 

  103. Salihu A, Alam MZ (2015) Solvent tolerant lipases: a review. Process Biochem 50:86–96. https://doi.org/10.1016/j.procbio.2014.10.019

    Article  CAS  Google Scholar 

  104. Jemli S, Ayadi-Zouari D, Hlima H Ben, Bejar S (2016) Biocatalysts: application and engineering for industrial purposes. Crit Rev Biotechnol 36:246–258. https://doi.org/10.3109/07388551.2014.950550

  105. Manoel EA, dos Santos JCS, Freire DMG et al (2015) Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme Microb Technol 71:53–57. https://doi.org/10.1016/j.enzmictec.2015.02.001

    Article  CAS  PubMed  Google Scholar 

  106. Rodrigues RC, Virgen-Ortíz JJ, dos Santos JCS et al (2019) Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv 37:746–770. https://doi.org/10.1016/j.biotechadv.2019.04.003

    Article  CAS  PubMed  Google Scholar 

  107. Vescovi V, Kopp W, Guisán JM et al (2016) Improved catalytic properties of Candida antarctica lipase B multi-attached on tailor-made hydrophobic silica containing octyl and multifunctional amino- glutaraldehyde spacer arms. Process Biochem 51:2055–2066. https://doi.org/10.1016/j.procbio.2016.09.016

    Article  CAS  Google Scholar 

  108. de Lima LN, Mendes AA, Fernandez-Lafuente R et al (2018) Performance of different immobilized lipases in the syntheses of short- and long-chain carboxylic acid esters by esterification reactions in organic media. Molecules 23:766. https://doi.org/10.3390/molecules23040766

    Article  CAS  PubMed Central  Google Scholar 

  109. Lima LCD, Peres DGC, Mendes AA (2018) Kinetic and thermodynamic studies on the enzymatic synthesis of wax ester catalyzed by lipase immobilized on glutaraldehyde-activated rice husk particles. Bioprocess Biosyst Eng 41:991–1002. https://doi.org/10.1007/s00449-018-1929-9

    Article  CAS  PubMed  Google Scholar 

  110. Reis CLB, de Sousa EYA, de França SJ et al (2019) Design of immobilized enzyme biocatalysts: Drawbacks and opportunities. Quim Nova 42:768–783. https://doi.org/10.21577/0100-4042.20170381

    Article  CAS  Google Scholar 

  111. Bolina ICA, Salviano AB, Tardioli PW et al (2018) Preparation of ion-exchange supports via activation of epoxy-SiO2 with glycine to immobilize microbial lipase – use of biocatalysts in hydrolysis and esterification reactions. Int J Biol Macromol 120:2354–2365. https://doi.org/10.1016/j.ijbiomac.2018.08.190

    Article  CAS  PubMed  Google Scholar 

  112. Alves MD, Cren ÉC, Mendes AA (2016) Kinetic, thermodynamic, optimization and reusability studies for the enzymatic synthesis of a saturated wax ester. J Mol Catal B Enzym 133:S377–S387. https://doi.org/10.1016/j.molcatb.2017.02.011

    Article  CAS  Google Scholar 

  113. Alves MD, Aracri FM, Cren ÉC, Mendes AA (2017) Isotherm, kinetic, mechanism and thermodynamic studies of adsorption of a microbial lipase on a mesoporous and hydrophobic resin. Chem Eng J 311:1–12. https://doi.org/10.1016/j.cej.2016.11.069

    Article  CAS  Google Scholar 

  114. Poppe JK, Fernandez-Lafuente R, Rodrigues RC, Ayub MAZ (2015) Enzymatic reactors for biodiesel synthesis: present status and future prospects. Biotechnol Adv 33:511–525. https://doi.org/10.1016/j.biotechadv.2015.01.011

    Article  CAS  PubMed  Google Scholar 

  115. Malcata FX, Reyes HR, Garcia HS et al (1990) Immobilized lipase reactors for modification of fats and oils-A review. J Am Oil Chem Soc 67:890–910. https://doi.org/10.1007/BF02541845

    Article  CAS  Google Scholar 

  116. Cantone S, Ferrario V, Corici L et al (2013) Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem Soc Rev 42:6262–6276. https://doi.org/10.1039/c3cs35464d

    Article  CAS  PubMed  Google Scholar 

  117. Zucca P, Sanjust E (2014) Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules 19:14139–14194. https://doi.org/10.3390/molecules190914139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mohamad NR, Marzuki NHC, Buang NA et al (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 29:205–220. https://doi.org/10.1080/13102818.2015.1008192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Santos JCSD, Barbosa O, Ortiz C et al (2015) Importance of the support properties for immobilization or purification of enzymes. ChemCatChem 7:2413–2432. https://doi.org/10.1002/cctc.201500310

    Article  CAS  Google Scholar 

  120. Rodrigues RC, Hernandez K, Barbosa O et al (2015) Immobilization of proteins in poly-styrene-divinylbenzene matrices: functional properties and applications. Curr Org Chem 19:1707–1718. https://doi.org/10.2174/1385272819666150429231728

    Article  CAS  Google Scholar 

  121. Gholamzadeh P, Mohammadi Ziarani G, Badiei A (2017) Immobilization of lipases onto the SBA-15 mesoporous silica. Biocatal Biotransformation 35:131–150. https://doi.org/10.1080/10242422.2017.1308495

    Article  CAS  Google Scholar 

  122. Verma ML, Kumar S, Das A et al (2020) Chitin and chitosan-based support materials for enzyme immobilization and biotechnological applications. Environ Chem Lett 18:315–323. https://doi.org/10.1007/s10311-019-00942-5

    Article  CAS  Google Scholar 

  123. Ortiz C, Ferreira ML, Barbosa O et al (2019) Novozym 435: The “perfect” lipase immobilized biocatalyst? Catal Sci Technol 9:2380–2420. https://doi.org/10.1039/c9cy00415g

    Article  CAS  Google Scholar 

  124. Madarász J, Németh D, Bakos J et al (2015) Solvent-free enzymatic process for biolubricant production in continuous microfluidic reactor. J Clean Prod 93:140–144. https://doi.org/10.1016/j.jclepro.2015.01.028

    Article  CAS  Google Scholar 

  125. Salimon J, Salih N, Abdullah BM (2012) Production of chemoenzymatic catalyzed monoepoxide biolubricant: Optimization and physicochemical characteristics. J Biomed Biotechnol 2012:693848. https://doi.org/10.1155/2012/693848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Gryglewicz S, Muszyński M, Nowicki J (2013) Enzymatic synthesis of rapeseed oil-based lubricants. Ind Crops Prod 45:25–29. https://doi.org/10.1016/j.indcrop.2012.11.038

    Article  CAS  Google Scholar 

  127. dos Santos Corrêa IN, da Silva SSP, de Queiroz DS et al (2016) Enzymatic synthesis of dioctyl sebacate. J Mol Catal B Enzym 133:S166–S171. https://doi.org/10.1016/j.molcatb.2016.12.011

    Article  CAS  Google Scholar 

  128. Yadav MG, Vadgama RN, Kavadia MR et al (2019) Production of pentaerythritol monoricinoleate (PEMR) by immobilized Candida antarctica lipase B. Biotechnol Reports 23:e00353. https://doi.org/10.1016/j.btre.2019.e00353

    Article  Google Scholar 

  129. Zhang X, Wan X, Cao H et al (2017) Chemo-enzymatic epoxidation of Sapindus mukurossi fatty acids catalyzed with Candida sp. 99–125 lipase in a solvent-free system. Ind Crops Prod 98:10–18. https://doi.org/10.1016/j.indcrop.2017.01.013

    Article  CAS  Google Scholar 

  130. Kleinaite E, Jaška V, Tvaska B, Matijošyte I (2014) A cleaner approach for biolubricant production using biodiesel as a starting material. J Clean Prod 75:40–44. https://doi.org/10.1016/j.jclepro.2014.03.077

    Article  CAS  Google Scholar 

  131. Okura NS, Sabi GJ, Crivellenti MC et al (2020) Improved immobilization of lipase from Thermomyces lanuginosus on a new chitosan-based heterofunctional support: mixed ion exchange plus hydrophobic interactions. Int J Biol Macromol 163:550–561. https://doi.org/10.1016/j.ijbiomac.2020.07.021

    Article  CAS  PubMed  Google Scholar 

  132. Zhang W, Qing W, Ren Z et al (2014) Lipase immobilized catalytically active membrane for synthesis of lauryl stearate in a pervaporation membrane reactor. Bioresour Technol 172:16–21. https://doi.org/10.1016/j.biortech.2014.08.019

    Article  CAS  PubMed  Google Scholar 

  133. FDA C, Sutili FK, Miranda LSM et al (2012) Epoxidation of oleic acid catalyzed by PSCI-Amano lipase optimized by experimental design. J Mol Catal B Enzym 81:7–11. https://doi.org/10.1016/j.molcatb.2012.03.011

    Article  CAS  Google Scholar 

  134. Zheng D, Wang S, Qiu S et al (2018) Synthesis of butyl oleate catalyzed by cross-linked enzyme aggregates with magnetic nanoparticles in rotating magneto-micro-reactor. J Biotechnol 281:123–129. https://doi.org/10.1016/j.jbiotec.2018.07.011

    Article  CAS  PubMed  Google Scholar 

  135. Virgen-Ortíz JJ, Peirce S, Tacias-Pascacio VG et al (2016) Reuse of anion exchangers as supports for enzyme immobilization: reinforcement of the enzyme-support multiinteraction after enzyme inactivation. Process Biochem 51:1391–1396. https://doi.org/10.1016/j.procbio.2016.06.020

    Article  CAS  Google Scholar 

  136. Miguez JP, Gama RS, Bolina ICA et al (2018) Enzymatic synthesis optimization of a cosmetic ester catalyzed by a homemade biocatalyst prepared via physical adsorption of lipase on amino-functionalized rice husk silica. Chem Eng Res Des 139:296–308. https://doi.org/10.1016/j.cherd.2018.09.037

    Article  CAS  Google Scholar 

  137. Machado NB, Miguez JP, Bolina ICA et al (2019) Preparation, functionalization and characterization of rice husk silica for lipase immobilization via adsorption. Enzyme Microb Technol 128:9–21. https://doi.org/10.1016/j.enzmictec.2019.05.001

    Article  CAS  PubMed  Google Scholar 

  138. Virgen-Ortíz JJ, Tacias-Pascacio VG, Hirata DB et al (2017) Relevance of substrates and products on the desorption of lipases physically adsorbed on hydrophobic supports. Enzyme Microb Technol 96:30–35. https://doi.org/10.1016/j.enzmictec.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  139. Rueda N, Dos Santos CS, Rodriguez MD et al (2016) Reversible immobilization of lipases on octyl-glutamic agarose beads: a mixed adsorption that reinforces enzyme immobilization. J Mol Catal B Enzym 128:10–18. https://doi.org/10.1016/j.molcatb.2016.03.002

    Article  CAS  Google Scholar 

  140. Mohamad NR, Buang NA, Mahat NA et al (2015) Simple adsorption of Candida rugosa lipase onto multi-walled carbon nanotubes for sustainable production of the flavor ester geranyl propionate. J Ind Eng Chem 32:99–108. https://doi.org/10.1016/j.jiec.2015.08.001

    Article  CAS  Google Scholar 

  141. Valldeperas M, Salis A, Barauskas J et al (2019) Enzyme encapsulation in nanostructured self-assembled structures: toward biofunctional supramolecular assemblies. Curr Opin Colloid Interface Sci 44:130–142. https://doi.org/10.1016/j.cocis.2019.09.007

    Article  CAS  Google Scholar 

  142. Adhikari BR, Schraft H, Chen A (2017) A high-performance enzyme entrapment platform facilitated by a cationic polymer for the efficient electrochemical sensing of ethanol. Analyst 142:2595–2602. https://doi.org/10.1039/c7an00594f

    Article  CAS  PubMed  Google Scholar 

  143. Mateo C, Grazu V, Palomo JM et al (2007) Immobilization of enzymes on heterofunctional epoxy supports. Nat Protoc 2:1022–1033. https://doi.org/10.1038/nprot.2007.133

    Article  CAS  PubMed  Google Scholar 

  144. Mukherjee J, Gupta MN (2017) Protein aggregates: forms, functions and applications. Int J Biol Macromol 97:778–789. https://doi.org/10.1016/j.ijbiomac.2016.11.014

    Article  CAS  PubMed  Google Scholar 

  145. Sheldon RA (2019) CLEAs, combi-CLEAs and ‘smart’ magnetic CLEAs: biocatalysis in a bio-based economy. Catalysts 9:1–31. https://doi.org/10.3390/catal9030261

    Article  CAS  Google Scholar 

  146. Navvabi A, Razzaghi M, Fernandes P et al (2018) Novel lipases discovery specifically from marine organisms for industrial production and practical applications. Process Biochem 70:61–70. https://doi.org/10.1016/j.procbio.2018.04.018

    Article  CAS  Google Scholar 

  147. Almeida JM, Alnoch RC, Souza EM et al (1868) Metagenomics: is it a powerful tool to obtain lipases for application in biocatalysis? Biochim Biophys Acta - Proteins Proteomics 2020:140320. https://doi.org/10.1016/j.bbapap.2019.140320

    Article  CAS  Google Scholar 

  148. Rios NS, Mendez-Sanchez C, Arana-Peña S et al (2019) Immobilization of lipase from Pseudomonas fluorescens on glyoxyl-octyl-agarose beads: Improved stability and reusability. Biochim Biophys Acta - Proteins Proteomics 1867:741–747. https://doi.org/10.1016/j.bbapap.2019.06.005

    Article  CAS  PubMed  Google Scholar 

  149. Albuquerque TLD, Rueda N, Dos Santos JCS et al (2016) Easy stabilization of interfacially activated lipases using heterofunctional divinyl sulfone activated-octyl agarose beads. Modulation of the immobilized enzymes by altering their nanoenvironment. Process Biochem 51:865–874. https://doi.org/10.1016/j.procbio.2016.04.002

    Article  CAS  Google Scholar 

  150. Suescun A, Rueda N, Dos Santos JCS et al (2015) Immobilization of lipases on glyoxyl-octyl supports: Improved stability and reactivation strategies. Process Biochem 50:1211–1217. https://doi.org/10.1016/j.procbio.2015.05.010

    Article  CAS  Google Scholar 

  151. Arana-Peña S, Rios NS, Mendez-Sanchez C et al (2020) Use of polyethylenimine to produce immobilized lipase multilayers biocatalysts with very high volumetric activity using octyl-agarose beads: avoiding enzyme release during multilayer production. Enzyme Microb Technol 137:109535. https://doi.org/10.1016/j.enzmictec.2020.109535

    Article  CAS  PubMed  Google Scholar 

  152. Rios NS, Morais EG, dos Santos GW et al (2019) Further stabilization of lipase from Pseudomonas fluorescens immobilized on octyl coated nanoparticles via chemical modification with bifunctional agents. Int J Biol Macromol 141:313–324. https://doi.org/10.1016/j.ijbiomac.2019.09.003

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001. The authors also thank the financial support of Fundação de Amparo à Pesquisa do Estado de Minas Gerais—FAPEMIG (Process APQ–02196–15), and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Process 404929/2016–8). Iara C. A. Bolina thanks the FAPEMIG for the student fellowship, and Adriano A. Mendes thanks the CNPq for the research fellowship (PQ-2 CA EQ, Process 301355/2017-7).

Author information

Authors and Affiliations

Authors

Contributions

Iara C. A. Bolina, Raphael A. B. Gomes, and Adriano A. Mendes performed the paper writing and final editing of the manuscript. Adriano A. Mendes took care of the conceptualization, supervision, and funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Adriano A. Mendes.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolina, I.C.A., Gomes, R.A.B. & Mendes, A.A. Biolubricant Production from Several Oleaginous Feedstocks Using Lipases as Catalysts: Current Scenario and Future Perspectives. Bioenerg. Res. 14, 1039–1057 (2021). https://doi.org/10.1007/s12155-020-10242-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10242-4

Keywords

Navigation