Skip to main content

Advertisement

Log in

A review on Lantana camara lignocellulose fiber-reinforced polymer composites

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Concerns about renewable energy and the environment are driving the development of high-performance manufactured products made from natural resources around the world. Natural fiber composites play an essential role in the advancement of high-performance engineering materials due to their ease of use, recyclability, and environmental friendliness. The noxious plant Lantana camara poses a serious threat to grazing cattle, biodiversity, land productivity, and, as a result, overall ecology. One of the potential strategies for limiting its invasion in agricultural and forest regions is by utilizing the L. camara stems as a source of lignocellulosic fiber in bio-composites. The main objective of this review article is to give a thorough overview of L. camara fibers and composites. Chemical modifications, manufacturing methods, the fabrication of the reinforced matrices, and also the mechanical, chemical, and morphological features of L. camara fiber-reinforced composites are reviewed comprehensively. Ultimately, this article identifies, examines, and fills gaps in past research and also offers useful information for future research in other streams that use L. camara fiber as reinforcement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

adapted from Bhupender and Anil Kumar [116], International Research Journal of Engineering and Technology, 4, 3167–3171)

Fig. 9

Similar content being viewed by others

Data availability

The data and material will be available on request.

Code availability

N/A

References

  1. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fiber composites and their mechanical performance. Compos A Appl Sci Manuf 83:98–112

    Article  MATH  Google Scholar 

  2. Senthamaraikannan P, Kathiresan M (2018) Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis L. Carbohyd Polym 186:332–343

    Article  MATH  Google Scholar 

  3. Yashas Gowda TG, Sanjay MR, Subrahmanya Bhat K, Madhu P, Senthamaraikannan P, Yogesha B (2018) Polymer matrix-natural fiber composites: an overview. Cogent Eng 5(1):1446667

    Article  Google Scholar 

  4. Du Y, Shen SZ, Cai K, Casey PS (2012) Research progress on polymer–inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37(6):820–841

    Article  Google Scholar 

  5. Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fiber reinforced polymer composites: an overview. Compos B Eng 43(7):2883–2892

    Article  MATH  Google Scholar 

  6. Lotfi A, Li H, Dao DV, Prusty G (2019) Natural fiber–reinforced composites: a review on material, manufacturing, and machinability. J Thermoplast Compos Mater 1–47:089270571984454

    Google Scholar 

  7. Mohd FO, Hazizan MA, Ahmad ZA (2012) Effect of particle sizes on rate sensitivity and dynamic mechanical properties of polypropylene/silica (PP/SiO2) nanocomposites. In Adv Mater Res 364:181–185 (Trans Tech Publications Ltd)

    Article  MATH  Google Scholar 

  8. Agunsoye JO, Isaac TS, Samuel SO (2012) Study of mechanical behaviour of coconut shell reinforced polymer matrix composite. J Min Mater Character Eng 11(8):774–779

    MATH  Google Scholar 

  9. O’Donnell A, Dweib MA, Wool RP (2004) Natural fiber composites with plant oil-based resin. Compos Sci Technol 64(9):1135–1145

    Article  Google Scholar 

  10. Sanjay MR, Madhu P, Jawaid M, Senthamaraikannan P, Senthil S, Pradeep S (2018) Characterization and properties of natural fiber polymer composites: a comprehensive review. J Clean Prod 172:566–581

    Article  Google Scholar 

  11. Koricho EG, Belingardi G, Beyene AT (2014) Bending fatigue behavior of twill fabric E-glass/epoxy composite. Compos Struct 111:169–178

    Article  Google Scholar 

  12. Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H (2003) Kenaf reinforced biodegradable composite. Compos Sci Technol 63(9):1281–1286

    Article  Google Scholar 

  13. Hargitai H, Rácz I, Anandjiwala RD (2008) Development of hemp fiber reinforced polypropylene composites. J Thermoplast Compos Mater 21(2):165–174

    Article  MATH  Google Scholar 

  14. Verma D, Gope PC, Shandilya A, Gupta A, Maheshwari MK (2013) Coir fiber reinforcement and application in polymer composites. J Mater Environ Sci 4(2):263–276

    Google Scholar 

  15. Verma D, Gope PC, Maheshwari MK, Sharma RK (2012) Bagasse fiber composites-a review. J Mater Environ Sci 3(6):1079–1092

    MATH  Google Scholar 

  16. Yan ZL, Wang H, Lau KT, Pather S, Zhang JC, Lin G, Ding Y (2013) Reinforcement of polypropylene with hemp fibers. Compos B Eng 46:221–226

    Article  Google Scholar 

  17. Sreekumar PA, Joseph K, Unnikrishnan G, Thomas S (2007) A comparative study on mechanical properties of sisal-leaf fiber-reinforced polyester composites prepared by resin transfer and compression molding techniques. Compos Sci Technol 67(3–4):453–461

    Article  Google Scholar 

  18. Andersons J, Spārniņš E, Joffe R (2006) Stiffness and strength of flax fiber/polymer matrix composites. Polym Compos 27(2):221–229

    Article  MATH  Google Scholar 

  19. Gu Y, Tan X, Yang Z, Zhang Z (2014) Hot compaction and mechanical properties of ramie fabric/epoxy composite fabricated using vacuum assisted resin infusion molding. Mater Des 1980–2015(56):852–861

    Article  Google Scholar 

  20. Deo C, Sahu MSK (2018) The effects of fiber treatment on wear performance of lantana-camara/epoxy composites. Int J Adv Technol Eng Res 12(2014):23–25

    MATH  Google Scholar 

  21. Li X, Tabil GL (2007) Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polymers Environ 15(1):25–33

    Article  Google Scholar 

  22. Hassan MM, Wagner MH (2016) Surface modification of natural fibers for reinforced polymer composites: a critical review. Rev Adhesion and Adhesives 4(1):1–46

    Article  MATH  Google Scholar 

  23. Sood M, Dharmpal D, Gupta VK (2015) Effect of fiber chemical treatment on mechanical properties of sisal fiber/recycled HDPE composite. Mater Today: Proceed 2(4–5):3149–3155

    MATH  Google Scholar 

  24. Adeniyi AG, Onifade DV, Ighalo JO, and Adeoye AS (2019) A review of coir fiber reinforced polymer composites. Composites Part B: Engineering, 176, Article 107305.

  25. Bismarck A, Mishra S, and Lampke T (2005) Plant fibers as reinforcement for green composites. In Natural fibers, biopolymers, and biocomposites (52–128). CRC Press.

  26. Mann GS, Singh LP, Kumar P, Singh S (2018) Green composites: a review of processing technologies and recent applications. J Thermoplast Compos Mater 1–27:0892705718816354

    MATH  Google Scholar 

  27. Nirmal U, Hashim J, Megat Ahmad MMH (2015) A review on tribological performance of natural fiber polymeric composites. Tribol Int 83:77–104

    Article  MATH  Google Scholar 

  28. Rao KMM, Rao KM, Prasad AR (2010) Fabrication and testing of natural fiber composites: vakka, sisal, bamboo and banana. Mater Des 31(1):508–513

    Article  MATH  Google Scholar 

  29. Mishra V, Biswas S (2013) Physical and mechanical properties of bi-directional jute fiber epoxy composites. Procedia Eng 51:561–566

    Article  MATH  Google Scholar 

  30. Mohammed L, Ansari MN, Pua G, Jawaid M, and Islam MS (2015) A review on natural fiber reinforced polymer composite and its applications. Int J Poly Sci

  31. Jawaid M, Khalil HA, Bakar AA (2010) Mechanical performance of oil palm empty fruit bunches/jute fibers reinforced epoxy hybrid composites. Mater Sci Eng A 527(29–30):7944–7949

    Article  MATH  Google Scholar 

  32. Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61(10):1437–1447

    Article  MATH  Google Scholar 

  33. Dong C (2018) Review of natural fiber-reinforced hybrid composites. J Reinf Plast Compos 37(5):331–348

    Article  MATH  Google Scholar 

  34. Naveen J, Jawaid M, Amuthakkannan P, and Chandrasekar M (2019) 21-Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites (427–440). Woodhead Publishing

  35. Zhu Z, Wu H, Ye C, Fu W (2017) Enhancement on mechanical and thermal properties of PLA biocomposites due to the addition of hybrid sisal fibers. J Nat Fibers 14(6):875–886

    Article  MATH  Google Scholar 

  36. Fuqua MA, Huo S, Ulven CA (2012) Natural fiber reinforced composites. Polym Rev 52(3–4):259–320

    Article  Google Scholar 

  37. Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fiber reinforced polymer hybrid composites: a review. Carbohyd Polym 86(1):1–18

    Article  MATH  Google Scholar 

  38. Osti De Moraes DV, Magnabosco R, Bolognesi Donato GH, Prado Bettini SH, Antunes MC (2015) Influence of loading frequency on the fatigue behaviour of coir fiber reinforced PP composite. Polym Testing 41(1):184–190

    Article  Google Scholar 

  39. Zhang Y, Huang X, Yu Y, and Yu W (2019) Effects of internal structure and chemical compositions on the hygroscopic property of bamboo fiber reinforced composites. App Surf Sci 492 936–943. Zhu Z, Wu H, Ye C., & Fu W. (2017)

  40. Iucolano F, Liguori B, Aprea P, Caputo D (2018) Thermo-mechanical behaviour of hemp fibers-reinforced gypsum plasters. Constr Build Mater 185:256–263

    Article  Google Scholar 

  41. Chaitanya S, Singh I, Song JII (2019) Recyclability analysis of PLA/sisal fiber biocomposites. Composites Part B: Eng 173:106895

    Article  MATH  Google Scholar 

  42. Ramakrishnan S, Krishnamurthy K, Rajasekar R, Rajeshkumar G (2019) An experimental study on the effect of nano-clay addition on mechanical and water absorption behaviour of jute fiber reinforced epoxy composites. J Ind Text 49(5):597–620

    Article  MATH  Google Scholar 

  43. Haque MM, Hasan M, Islam MS, Ali ME (2009) Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites. Biores Technol 100(20):4903–4906

    Article  MATH  Google Scholar 

  44. Cai M, Takagi H, Nakagaito AN, Katoh M, Ueki T, Waterhouse GIN et al (2015) Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Ind Crops Prod 65:27–35

    Article  Google Scholar 

  45. Giridharan R (2018) Preparation and property evaluation of glass/ramie fibers reinforced epoxy hybrid composites. Compos B Eng 167:342–345

    Article  MATH  Google Scholar 

  46. Todkar SS, Patil SA (2019) Review on mechanical properties evaluation of pineapple leaf fiber (PALF) reinforced polymer composites. Compos B Eng 174:106927

    Article  Google Scholar 

  47. Omar MF, Jaya H, Zulkepli NN (2020) Kenaf fiber reinforced composite in the automotive industry. Ency Renew Sustain Mater 9:95–101

    MATH  Google Scholar 

  48. Alomayri T, Shaikh FUA, Low IM (2013) Characterisation of cotton fiber-reinforced geopolymer composites. Compos B Eng 50:1–6

    Article  Google Scholar 

  49. Sharma K, Khilari V, Chaudhary BU, Jogi AB, Pandit AB, Kale RD (2020) Cotton based composite fabric reinforced with waste polyester fibers for improved mechanical properties. Waste Manag 107:227–234

    Article  Google Scholar 

  50. On’esippe C, Passe-Coutrin N, Toro F, Delvasto S, Bilba K, Ars’ene MA (2010) Sugar cane bagasse fibers reinforced cement composites: thermal considerations. Compos A Appl Sci Manuf 41(4):549–556

    Article  Google Scholar 

  51. Mohan TP, Kanny K (2019) Compressive characteristics of unmodified and nanoclay treated banana fiber reinforced epoxy composite cylinders. Compos B Eng 169:118–125

    Article  Google Scholar 

  52. Rouison D, Sain M, Couturier M (2004) Resin transfer molding of natural fiber reinforced composites: cure simulation. Compos Sci Technol 64(5):629–644

    Article  Google Scholar 

  53. Akil H, Omar MF, Mazuki AAM, Safiee SZAM, Ishak ZM, Bakar AA (2011) Kenaf fiber reinforced composites: a review. Mater Des 32(8–9):4107–4121

    Article  Google Scholar 

  54. Coates W (1996) Kenaf performance in northwestern Argentina. Ind Crops Prod 5(3):223–228

    Article  MATH  Google Scholar 

  55. Mohamed A, Bhardwaj H, Hamama A, Webber C (1995) Chemical composition of kenaf (Hibiscus cannabinus L.) seed oil. Industrial crops and products 4(3):157–165

    Article  Google Scholar 

  56. Eleiche AM, Amin GM (1986) The effect of unidirectional cotton fiber reinforcement on the friction and wear characteristics of polyester. Wear 112(1):67–78

    Article  MATH  Google Scholar 

  57. Wambua P, Ivens J, Verpoest I (2003) Natural fibers: can they replace glass in fiber reinforced plastics? Compos Sci Technol 63(9):1259–1264

    Article  Google Scholar 

  58. Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polymer Technol: J Polymer Process Institute 18(4):351–363

    Article  MATH  Google Scholar 

  59. Mwaikambo L (2006) Review of the history, properties and application of plant fibers. Afr J Sci Technol 7(2):121

    Google Scholar 

  60. Mwaikambo LY, Ansell MP (2006) Mechanical properties of alkali treated plant fibers and their potential as reinforcement materials. I. Hemp fibers. J Mater Sci 41(8):2483–2496

    Article  MATH  Google Scholar 

  61. Rowell RM, Han JS, and Rowell JS (2000) Characterization and factors effecting fiber properties. NaturaLPolymers and Agrofibers Composites, Frolini, E, Leao, AL and Mattosso, L.H.C. (eds), San Carlos, Brazil, 115–127.

  62. Rajeshkumar G, Devnani GL, Maran JP, Sanjay MR, Siengchin S, Al-Dhabi NA, Ponmurugan K (2021) Characterization of novel natural cellulosic fibers from purple bauhinia for potential reinforcement in polymer composites. Cellulose 28(9):5373–5385

    Article  Google Scholar 

  63. Tengsuthiwat J, Vinod A, Srisuk R, Techawinyutham L, Rangappa SM, and Siengchin S (2021) Thermo-mechanical characterization of new natural cellulose fiber from Zmioculus zamiifolia. J Poly Environ 1–16.

  64. Vinod A, Gowda TY, Vijay R, Sanjay MR, Gupta MK, Jamil M, Siengchin S (2021) Novel Muntingia calabura bark fiber reinforced green-epoxy composite: a sustainable and green material for cleaner production. J Clean Prod 294:126337

    Article  Google Scholar 

  65. Rajeshkumar G, Hariharan V, Sathishkumar TP (2016) Characterization of Phoenix sp. natural fiber as potential reinforcement of polymer composites. J Industrial Textiles 46(3):667–683

    Article  Google Scholar 

  66. Jayaraman K (2003) Manufacturing sisal–polypropylene composites with minimum fiber degradation. Compos Sci Technol 63(3–4):367–374

    Article  MATH  Google Scholar 

  67. Hoareau W, Trindade WG, Siegmund B, Castellan A, Frollini E (2004) Sugar cane bagasse and curaua lignins oxidized by chlorine dioxide and reacted with furfuryl alcohol: characterization and stability. Polym Degrad Stab 86(3):567–576

    Article  Google Scholar 

  68. Hattalli S, Benaboura A, Ham-Pichavant F, Nourmamode A, Castellan A (2002) Adding value to Alfa grass (Stipa tenacissima L) soda lignin as phenolic resins 1 Lignin characterization. Polymer Degradation and Stability 76(2):259–264

    Article  Google Scholar 

  69. Rowell R. M. (2008). Natural fibers: types and properties. In Properties and performance of natural-fiber composites (3–66). Woodhead publishing.

  70. Lu JZ, Wu Q, McNabb HS (2000) Chemical coupling in wood fiber and polymer composites: a review of coupling agents and treatments. Wood Fiber Sci 32(1):88–104

    MATH  Google Scholar 

  71. Ghisalberti EL (2000) Lantana camara L(verbenaceae). Fitoterapia 71(5):467–486

    Article  Google Scholar 

  72. Kumarasamyraja D, Jeganathan NS, Manavalan R (2012) Pharmacological review of Lantana camara L review article. Int J Pharm Ind Res 2(1):1–5

    Google Scholar 

  73. Munir AA (1996). A taxonomic review of Lantana camara L. and L. montevidensis (Spreng.) Briq.(Verbenaceae) in Australia. J Adel Bot Gard, 1–27.

  74. Deo, C. R. (2010). Polymer matrix composite using natural fiber Lantana-camara (Doctoral dissertation)

  75. Day MD, Wiley CJ, Playford J, and Zalucki MP (2003) Lantana: current management status and future prospects (No. 435–2016–33733).

  76. Goulson D, Derwent LC (2004) Synergistic interactions between an exotic honeybee and an exotic weed: pollination of Lantana camara in Australia. Weed Res 44(3):195–202

    Article  MATH  Google Scholar 

  77. Reddy NM (2013) Lantana camara Linn. chemical constituents and medicinal properties: a review. Scholars Acad J Phar 2(6):445–448

    MATH  Google Scholar 

  78. Kannan R, Aravind NA, Joseph G, Ganeshaiah KN, Shaanker RU (2008) Lantana craft: a weed for a need. Biotech News 3(2):9–11

    Google Scholar 

  79. Naithani S, Pande PK (2009) Evaluation of Lantana camara Linn stem for pulp and paper making. Indian Forester 135(8):1081

    MATH  Google Scholar 

  80. Kohli RK, Batish DR, Singh HP, Dogra KS (2006) Status invasiveness and environmental threats of three tropical American invasive weeds (Parthenium hysterophorus L Ageratum conyzoides L Lantana camara L) in India. Biological Invasions 8(7):1501–1510

    Article  Google Scholar 

  81. Murali KS, and Setty RS (2001) Effect of weeds Lantana camara and Chromelina odorata growth on the species diversity, regeneration and stem density of tree and shrub layer in BRT sanctuary. Curr Sci, 675–678.

  82. Sharma GP, Raghubanshi AS (2010) How Lantana invades dry deciduous forest: a case study from Vindhyan highlands. India Trop Ecol 51(2):305–316

    Google Scholar 

  83. Iyengar AV (1933) The problem of the Lantana. Curr Sci 1(9):266–269

    MATH  Google Scholar 

  84. Soni PL, Naithani S, Gupta PK, Bhatt A, Khullar R (2006) Utilization of economic potential of Lantana camara. Indian Forester 132(12):1625–1630

    MATH  Google Scholar 

  85. Priyanka N, Joshi PK (2013) A review of Lantana camara studies in India. Int J Sci Res Publ 3(10):1–11

    MATH  Google Scholar 

  86. Dogra KS, Kohli RK, Sood SK (2009) An assessment and impact of three invasive species in the Shivalik hills of Himachal Pradesh, India. Int J Biodiversity Conservation 1(1):004–010

    MATH  Google Scholar 

  87. Sharma OP (1989) Natural products of the Lantane plant: the present and prospects. J Sci Ind Res 48(10):471–478

    MATH  Google Scholar 

  88. Sharma OP (1988) How to combat lantana (Lantana camara L) menace?-a current perspective. J Sci Ind Res 47(10):611–616

    MATH  Google Scholar 

  89. Singh SK, Singh A, Tripathi VJ, Finzi PV (1997) Minor constituents of Lantana camara. ChemInform 28(39):213

    Article  MATH  Google Scholar 

  90. O’Neill MJ, Lewis JA, Noble HM, Holland S, Mansat C, Farthing JE, ... and Dix CJ (1998) Isolation of translactone-containing triterpenes with thrombin inhibitory activities from the leaves of Lantana camara. J Nat Prod, 61(11), 1328-1331

  91. Nagao T, Abe F, Kinjo J, Okabe H (2002) Antiproliferative constituents in plants 10 Flavones from the leaves of Lantana montevidensis BRIQ and consideration of structure–activity relationship. Biol Pharm Bullet 25(7):875–879

    Article  Google Scholar 

  92. Prasad S, Singh A, Joshi HC (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50(1):1–39

    Article  MATH  Google Scholar 

  93. Begum S, Wahab A, Siddiqui BS (2003) Pentacyclic triterpenoids from the aerial parts of Lantana camara. Chem Pharm Bull 51(2):134–137

    Article  MATH  Google Scholar 

  94. Chavan SR, Nikam ST (1982) Investigation of Lantana camara Linn (Verbenaceae) leaves for larvicidal activity. Bullet Haffkine Institute 10(1):21–22

    MATH  Google Scholar 

  95. Sharma OP, Sharma S, Pattabhi V, Mahato SB, Sharma PD (2007) A review of the hepatotoxic plant Lantana camara. Crit Rev Toxicol 37(4):313–352

    Article  MATH  Google Scholar 

  96. Gujral SS, Vasudevan P (1983) Lantana camara L., a problem weed. J Sci Ind Res 42(5):281–286

    MATH  Google Scholar 

  97. Bhatt N, Gupta PK, Naithani S (2011) Ceric-induced grafting of acrylonitrile onto alpha cellulose isolated from Lantana camara. Cellul Chem Technol 45(5–6):321–327

    Google Scholar 

  98. Ray AK, and Puri MK (2007) Modeling H factor-kappa number for kraft pulping of Lantana camara plant-an experimental investigation. In The 2007 Annual Meeting

  99. Ganjewala D, Sam S, Khan KH (2009) Biochemical compositions and antibacterial activities of Lantana camara plants with yellow, lavender, red and white flowers. EurAsian J BioSci 3(1):69–77

    Article  Google Scholar 

  100. Ram HM, Mathur G (1984) Flower colour changes in Lantana camara. J Exp Bot 35(11):1656–1662

    Article  Google Scholar 

  101. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596

    Article  Google Scholar 

  102. Megiatto JD, Oliveira FB, Rosa DS, Gardrat C, Castellan A, Frollini E (2007) Renewable resources as reinforcement of polymeric matrices: composites based on phenolic thermosets and chemically modified sisal fibers. Macromol Biosci 7(9–10):1121–1131

    Article  Google Scholar 

  103. Rout J, Misra M, Tripathy SS, Nayak SK, Mohanty AK (2002) Surface modification of coir fibers II Cu (II)-IO initiated graft copolymerization of acrylonitrile onto chemically modified coir fibers. J App Polymer Sci 84(1):75–82

    Article  Google Scholar 

  104. Mohanty AK, Misra M, Drzal LT (2001) Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfaces 8(5):313–343

    Article  MATH  Google Scholar 

  105. Valadez-Gonzalez A, Cervantes-Uc JM, Olayo RJIP, Herrera-Franco PJ (1999) Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Compos B Eng 30(3):309–320

    Article  Google Scholar 

  106. Fiore V, Di Bella G, Valenza A (2015) The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Compos B Eng 68:14–21

    Article  MATH  Google Scholar 

  107. George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41(9):1471–1485

    Article  MATH  Google Scholar 

  108. Manalo AC, Wani E, Zukarnain NA, Karunasena W, Lau KT (2015) Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fiber–polyester composites. Compos B Eng 80:73–83

    Article  Google Scholar 

  109. Joseph K, Mattoso LHC, Toledo RD, Thomas S, De Carvalho LH, Pothen L, and James B (2000) Natural fiber reinforced thermoplastic composites. Natural polymers and agrofibers composites, 159.

  110. Nair KM, Diwan SM, Thomas S (1996) Tensile properties of short sisal fiber reinforced polystyrene composites. J Appl Polym Sci 60(9):1483–1497

    Article  MATH  Google Scholar 

  111. Paul S, Nanda P, Gupta R (2003) PhCOCl-Py/basic alumina as a versatile reagent for benzoylation in solvent-free conditions. Molecules 8(4):374–380

    Article  Google Scholar 

  112. Rocha DB, dos Santos Rosa D (2019) Coupling effect of starch coated fibers for recycled polymer/wood composites. Composites Part B: Eng 172:1–8

    Article  MATH  Google Scholar 

  113. Kale, A., Raghu, N., Chauhan, S. S., and Aggarwal, P. (2017). Lantana fiber-filled polypropylene composite. In Wood is Good (343–351). Springer, Singapore.

  114. Pradhan S, Rajkonwar A, Acharya SK (2019) Study of mechanical and abrasive wear properties of lantana camara particulate reinforced epoxy composite. Mater Today: Proceed 19:264–268

    Google Scholar 

  115. Ngo TD (2018) 7-Natural fibers for sustainable bio-composites. Natural and artificial fiber-reinforced composites as renewable sources (107–126). IntechOpen.

  116. Bhupender AK (2017) Study on mechanical behaviour of Lantana-camara fiber reinforced epoxy based composites.

  117. Venezuela J, Dargusch MS (2019) The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: a comprehensive review. Acta Biomater 87:1–40

    Article  Google Scholar 

  118. Kumar SS, Hiremath SS (2020) Natural Fiber reinforced composites in the context of biodegradability: a review. Ency Renew Sustain Mater 322(1567):160–178

    MATH  Google Scholar 

  119. Lee BH, Kim HJ, Yu WR (2009) Fabrication of long and discontinuous natural fiber reinforced polypropylene biocomposites and their mechanical properties. Fibers Poly 10(1):83–90

    Article  MATH  Google Scholar 

  120. Marathe YN, Arun Torris AT, Ramesh C, Badiger MV (2019) Borassus powder-reinforced poly (lactic acid) composites with improved crystallization and mechanical properties. J Appl Polym Sci 136(18):1–11

    Article  Google Scholar 

  121. Raghavendra G, Acharya SK, Deo CR, Mishra P (2012) Fabrication-modelling and analysis on tribological performance of natural composites using taguchi approach. Procedia Eng 38:2635–2644

    Article  MATH  Google Scholar 

  122. Sudhakara P, Jagadeesh D, Wang Y, Venkata Prasad C, Devi APK, Balakrishnan G et al (2013) Fabrication of Borassus fruit lignocellulose fiber/PP composites and comparison with jute, sisal and coir fibers. Carbohyd Polym 98(1):1002–1010

    Article  Google Scholar 

  123. Deo C 2016 Moisture absorption studies of lantana-camara fiber epoxy composite. “Technological Advancement in Manufacturing & Processing of New Materials” (TAMPNM-2016) 9 th–10th April 2016, 195.

  124. Deo C, and Acharya SK (2010) Effects of fiber content on abrasive wear of Lantana Camara fiber reinforced polymer matrix composite

  125. Deo C, Acharya SK (2010) Effect of moisture absorption on mechanical properties of chopped natural fiber reinforced epoxy composite. J Reinf Plast Compos 29(16):2513–2521

    Article  MATH  Google Scholar 

  126. Deo C, Acharya SK (2010) Effects of load and sliding velocity on abrasive wear of Lantana camara fiber-reinforced polymer matrix composite. Proceed Institution Mechanic Eng, Part J: J Eng Tribol 224(5):491–496

    Article  Google Scholar 

  127. Dlamini DS, Mishra AK, Mamba BB (2012) Structural, transport and adsorptive properties of Lantana camara-reinforced ethylene vinyl acetate composites. Water Air Soil Pollut 223(7):3831–3843

    Article  Google Scholar 

  128. Ranjan M, Khali DP, Bhatt S (2017) Effect of cement: wood particle ratio on physical and mechanical properties of cement bonded particle board using Lantana camara. Indian Forester 143(4):360–363

    Google Scholar 

  129. Wang RM, Zheng SR, and Zheng YP (2011) 6-Forming technology of polymer matrix composites. Polymer matrix composites and technology (253–548). Woodhead Publishing

  130. Zin MH, Razzi MF, Othman S, Liew K, Abdan K, Mazlan N (2016) A review on the fabrication method of bio-sourced hybrid composites for aerospace and automotive applications. IOP Conference Series: Mater Sci Eng 152(1):012041

    Article  Google Scholar 

  131. Sabeel Ahmed K, Khalid SS, Mallinatha V, Amith Kumar SJ (2012) Dry sliding wear behavior of SiC/Al2O3 filled jute/epoxy composites. Mater Des 36:306–315

    Article  Google Scholar 

  132. Rahman MA, Parvin F, Hasan M, and Hoque M E (2015) 2-Introduction to manufacturing of natural fiber-reinforced polymer composites. Manufacturing of natural fiber reinforced polymer composites (17–43). Springer International Publishing.

  133. Maheswari CU, Reddy KO, Muzenda E, Shukla M, Rajulu AV (2013) A comparative study of modified and unmodified high-density polyethylene/ Borassus fiber composites. Int J Polym Anal Charact 18(6):439–450

    Article  Google Scholar 

  134. Sarasini F, Tirillό J, Puglia D, Dominici F, Santulli C, Boimau K et al (2017) Biodegradable polycaprolactone-based composites reinforced with ramie and borassus fibers. Composite Structure 167:20–29

    Article  Google Scholar 

  135. Hasan, M., Hoque, M. E., Mir, S. S., Saba, N., & Sapuan, S. M. (2015). 15-Manufacturing of coir fiber-reinforced polymer composites by hot compression technique. Manufacturing of natural fiber reinforced polymer composites (pp. 309–330). Springer International Publishing

  136. Ibrahim ID, Jamiru T, Sadiku ER, Kupolati WK, Agwuncha SC (2016) Impact of surface modification and nanoparticle on sisal fiber reinforced polypropylene nanocomposites. J Nanotechnol 4235975:1–10

    Article  Google Scholar 

  137. Punyamurthy R, Sampathkumar D, Ranganagowda RPG, Bennehalli B, Srinivasa CV (2017) Mechanical properties of abaca fiber reinforced polypropylene composites: effect of chemical treatment by benzenediazonium chloride. J King Saud Univ - Eng Sci 29(3):289–294

    Google Scholar 

  138. Shubhra QTH, Alam AKMM, Quaiyyum MA (2013) Mechanical properties of polypropylene composites: a review. J Thermoplast Compos Mater 26(3):362–391

    Article  MATH  Google Scholar 

  139. Suharty NS, Ismail H, Diharjo K, Handayani DS, Firdaus M (2016) Effect of Kenaf fiber as a reinforcement on the tensile, flexural strength and impact toughness properties of recycled polypropylene/halloysite composites. Procedia Chem 19:253–258

    Article  Google Scholar 

  140. Wu CM, Lai WY, Wang CY (2016) Effects of surface modification on the mechanical properties of flax/β-polypropylene composites. Mater 9(5):1–11

    Article  MATH  Google Scholar 

  141. Ramaraj R, Bhuyar P, Intarod K, Sameechaem N, Unpaprom Y (2021) Stimulation of natural enzymes for germination of mimosa weed seeds to enhanced bioethanol production. 3 Biotech 11(6):1–9

    Article  Google Scholar 

  142. Whangchai K, Inta W, Unpaprom Y, Bhuyar P, Adoonsook D, Ramaraj R (2021) Comparative analysis of fresh and dry free-floating aquatic plant Pistia stratiotes via chemical pretreatment for second-generation (2G) bioethanol production. Biores Technol Rep 14:100651

    Google Scholar 

  143. Yadav SM, Lubis MAR, Sihag K (2021) A comprehensive review on process and technological aspects of wood-plastic composites. Jurnal Sylva Lestari 9(2):329–356

    Article  MATH  Google Scholar 

  144. Yadav SM, Yusoh KB (2016) Preparation and characterization of wood plastic composite reinforced by organoclay. J Indian Acad Wood Sci 13(2):118–131

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the Forest College and Research Institute, Hyderabad, India, to accomplish this work.

Author information

Authors and Affiliations

Authors

Contributions

Swetha Gillela: writing–original draft preparation, writing–review and editing. Sumit Manohar Yadav: conceptualization, visualization, methodology, writing–review and editing. Kapil Sihag: investigation. Muhammad Adly Rahandi Lubis: investigation and editing. Eko Setio Wibowo: investigation, writing–review and editing. Anil Negi: investigation. Apri Heri Iswanto: investigation. Petar Antov: investigation. Lubos Kristak: investigation. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sumit Manohar Yadav.

Ethics declarations

Ethics approval

N/A

Consent to participate

N/A

Consent for publication

N/A

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gillela, S., Yadav, S.M., Sihag, K. et al. A review on Lantana camara lignocellulose fiber-reinforced polymer composites. Biomass Conv. Bioref. 14, 1495–1513 (2024). https://doi.org/10.1007/s13399-022-02402-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02402-7

Keywords

Navigation