Skip to main content

Advertisement

Log in

High-throughput system for carbohydrate analysis of lignocellulosic biomass

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract  

In India, the agricultural sector generates substantial amounts of lignocellulosic wastes representing an enormous source of renewable feedstock for biorefineries. The strategy toward such a bioeconomy will only be successful if enough biomass and desired qualities can be provided to produce bio-based products. It is, therefore, crucial to have a reliable estimate of the biofuel potential in such lignocellulosic resources. The estimates help define technologies suitable for conversions and also lay the basis for government policies to support different initiatives. Currently, the conventional approach is time-consuming, laborious, and requires resources that make the method unreliable for a large number of sample screening and technology mapping. Herein, we present an optimized feedstock compositional analysis method akin to the conventional approach. The introduction of an automated liquid handling platform for processing multiple samples at lower volumes and reduced hydrolysis times allows faster analysis thereby having high-throughput system (HTS) for biomass compositional analysis. The results demonstrate the validity of the optimized method for analyzing biomass composition at 100 samples/day, minimal analysis times, and low sample requirements (10 mg) in the HTS studies. The estimated carbohydrate composition can be used for the prediction of the theoretical ethanol yield (TEY). Furthermore, the HTS protocol can help screen a large number of samples paving the way to map agri-waste feedstocks based on crop variants, climatic changes, storage conditions, precipitation, and biotic and abiotic stresses for their effects on biofuel potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Han M, Choi G, Kim Y, Koo B (2011) Bioethanol production by Miscanthus-as a lignocellulosic biomass: focus on high efficiency conversion to glucose and -ethanol. BioResources 6(2):1939–1953. https://doi.org/10.15376/biores.6.2.1939-1953

    Article  Google Scholar 

  2. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098. https://doi.org/10.1021/cr068360d

    Article  Google Scholar 

  3. Bhuvaneshwari S, Hettiarachchi H, Meegoda JN (2019) Crop residue burning in India: policy challenges and potential solutions. Int J Environ Res Public Health 16(5):832. https://doi.org/10.3390/ijerph16050832

    Article  Google Scholar 

  4. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52(2):858–875. https://doi.org/10.1016/j.enconman.2010.08.013

    Article  Google Scholar 

  5. Uihlein A, Schebek L (2009) Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment. Biomass Bioenerg 33(5):793–802. https://doi.org/10.1016/j.biombioe.2008.12.001

    Article  Google Scholar 

  6. Zhang Y, Wang Y, Niu H (2019) Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios. Sci Total Environ 656:373–387. https://doi.org/10.1016/j.scitotenv.2018.11.362

    Article  Google Scholar 

  7. Hannah L, Roehrdanz PR, KC KB, Fraser ED, Donatti CI, Saenz L, Wright TM, Hijmans RJ, Mulligan M, Berg A, van Soesbergen A (2020) The environmental consequences of climate-driven agricultural frontiers. PloS one 15(2):e0228305. https://doi.org/10.1371/journal.pone.0228305

    Article  Google Scholar 

  8. Zhao YL, Dolat A, Steinberger Y, Wang X, Osman A, Xie GH (2009) Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. Field Crops Res 111(1–2):55–64. https://doi.org/10.1016/j.fcr.2008.10.006

    Article  Google Scholar 

  9. Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW (2010) Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem 58(16):9043–9053. https://doi.org/10.1021/jf1008023

    Article  Google Scholar 

  10. Foster CE, Martin TM, Pauly M (2010) Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part I: lignin. JoVE 37:e1745. https://doi.org/10.3791/1745

    Article  Google Scholar 

  11. Foster CE, Martin TM, Pauly M (2010b) Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part II: carbohydrates. JoVE, (37). https://doi.org/10.3791/1837

  12. Hames BR, Thomas SR, Sluiter AD, Roth CJ, Templeton DW (2003) Rapid biomass analysis. In Biotechnology for Fuels and Chemicals (pp. 5–16). Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0057-4_1

  13. Sykes R, Kodrzycki B, Tuskan G, Foutz K, Davis M (2008) Within tree variability of lignin composition in Populus. Wood Sci Technol 42(8):649–661. https://doi.org/10.1007/s00226-008-0199-0

    Article  Google Scholar 

  14. Sykes R, Yung M, Novaes E, Kirst M, Peter G, Davis M (2009). High-throughput screening of plant cell-wall composition using pyrolysis molecular beam mass spectroscopy. Biofuels, 169-183https://doi.org/10.1007/978-1-60761-214-8_12

  15. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008). Determination of structural carbohydrates and lignin in biomass laboratory analytical procedure. Golden, CO: National Renewable Energy Laboratory.

  16. DeMartini JD, Studer MH, Wyman CE (2011) Small-scale and automatable high-throughput compositional analysis of biomass. Biotechnol Bioeng 108(2):306–312. https://doi.org/10.1002/bit.22937

    Article  Google Scholar 

  17. Lorenz AJ, Anex RP, Isci A, Coors JG, De Leon N, Weimer PJ (2009) Forage quality and composition measurements as predictors of ethanol yield from maize (Zea mays L.) stover. Biotechnol Biofuels 2(1):1–8. https://doi.org/10.1186/1754-6834-2-5

    Article  Google Scholar 

  18. Santoro N, Cantu SL, Tornqvist CE, Falbel TG, Bolivar JL, Patterson SE, Pauly M, Walton JD (2010) A high-throughput platform for screening milligram quantities of plant biomass for lignocellulose digestibility. Bioenergy Res 3(1):93–102. https://doi.org/10.1007/s12155-009-9074-6

    Article  Google Scholar 

  19. Berlin A, Maximenko V, Bura R, Kang KY, Gilkes N, Saddler J (2006) A rapid microassay to evaluate enzymatic hydrolysis of lignocellulosic substrates. Biotechnol Bioeng 93(5):880–886. https://doi.org/10.1002/bit.20783

    Article  Google Scholar 

  20. Chundawat SP, Balan V, Dale BE (2008) High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass. Biotechnol Bioeng 99(6):1281–1294. https://doi.org/10.1002/bit.21805

    Article  Google Scholar 

  21. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112. https://doi.org/10.1016/j.biortech.2015.10.009

    Article  Google Scholar 

  22. Moreno AD, Tomás-Pejó E, Ballesteros M, and Negro MJ (2019) Pretreatment technologies for lignocellulosic biomass deconstruction within a biorefinery perspective. In Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (pp. 379–399). Academic Press. https://doi.org/10.1016/B978-0-12-816856-1.00016-6

  23. Selig MJ, Tucker MP, Law C, Doeppke C, Himmel ME, Decker SR (2011) High throughput determination of glucan and xylan fractions in lignocelluloses. Biotechnol Lett 33(5):961–967. https://doi.org/10.1007/s10529-011-0526-7

    Article  Google Scholar 

  24. Sluiter A, Wolfrum E (2013) Near infrared calibration models for pretreated corn stover slurry solids, isolated and in situ. J Near Infrared Spectrosc 21(4):249–257. https://doi.org/10.1255/jnirs.1065

    Article  Google Scholar 

  25. Xiao L, Wei H, Himmel ME, Jameel H, Kelley SS (2014) NIR and Py-mbms coupled with multivariate data analysis as a high-throughput biomass characterization technique: a review. Front Plant Sci 5:388. https://doi.org/10.3389/fpls.2014.00388

    Article  Google Scholar 

  26. Gjersing E, Happs RM, Sykes RW, Doeppke C, Davis MF (2013) Rapid determination of sugar content in biomass hydrolysates using nuclear magnetic resonance spectroscopy. Biotechnol Bioeng 110(3):721–728. https://doi.org/10.1002/bit.24741

    Article  Google Scholar 

  27. Sykes RW, Gjersing EL, Doeppke CL, Davis MF (2015) High-throughput method for determining the sugar content in biomass with pyrolysis molecular beam mass spectrometry. Bioenergy Res 8(3):964–972. https://doi.org/10.1007/s12155-015-9610-5

    Article  Google Scholar 

  28. Harman-Ware AE, Davis MF, Peter GF, Wang Y, Sykes RW (2017) Estimation of terpene content in loblolly pine biomass using a hybrid fast-GC and pyrolysis-molecular beam mass spectrometry method. J Anal Appl Pyrolysis 124:343–348. https://doi.org/10.1016/j.jaap.2017.01.011

    Article  Google Scholar 

  29. Guimarães CC, Simeone MLF, Parrella RA, Sena MM (2014) Use of NIRS to predict composition and bioethanol yield from cell wall structural components of sweet sorghum biomass. Microchem J 117:194–201. https://doi.org/10.1016/j.microc.2014.06.029

    Article  Google Scholar 

  30. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26(4):361–375. https://doi.org/10.1016/j.biombioe.2003.08.002

    Article  Google Scholar 

  31. Khattak WA, Ul-Islam M, Park JK (2012) Prospects of reusable endogenous hydrolyzing enzymes in bioethanol production by simultaneous saccharification and fermentation. Korean J Chem Eng 29(11):1467–1482. https://doi.org/10.1007/s11814-012-0174-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to M/s PerkinElmer (India) Private Limited for their help with the operations and initial training of the Liquid handling device. The authors are thankful to M/s India Glycols Limited, Uttarakhand, for providing the LBM samples for the research work. The authors are grateful to Institute of Chemical Technology, Mumbai (formerly U.D.C.T., Mumbai) and DBT-ICT Centre for Energy Biosciences for providing the infrastructure for carrying out this research work. The authors thank Mrs. Vibha Raut and Mr. Akshay Kolge for the technical support.

Funding

This research work was funded by Department of Biotechnology, Government of India (Project grant No.: BT/EB/ ICT-Extension/2012, 05/06/2013) and Indo-Australian Grand Challenge (DST/INT/AUS/GCP-5–13 (C) & (G)) at DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Parmeshwar S Patil, Arvind M Lali, Annamma A Odaneth; formal analysis and investigation: Parmeshwar S Patil, Custan G Fernandes; writing — original draft preparation: Parmeshwar S Patil; writing — review and editing: Parmeshwar S Patil, Custan G Fernandes, Annamma A Odaneth; funding acquisition: Arvind M Lali, Annamma A Odaneth; resources: Sneha C Sawant; supervision: Annamma A Odaneth.

Corresponding author

Correspondence to Annamma A. Odaneth.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1658 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, P.S., Fernandes, C.G., Sawant, S.C. et al. High-throughput system for carbohydrate analysis of lignocellulosic biomass. Biomass Conv. Bioref. 13, 12889–12901 (2023). https://doi.org/10.1007/s13399-022-02304-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02304-8

Keywords

Navigation