Skip to main content

Advertisement

Log in

Preparation and characterization of thermoplastic starch/bamboo shoot processing by-product microcrystalline cellulose composites

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Bamboo shoot processing by-products (BPSs) hve been regarded as an agricultural waste. How to utilize cellulose from BPSs at value-added utilization has attracted environmental and industrial interest. Crude cellulose was isolated from BPSs and then converted into microcrystalline cellulose (MCC). MCC from BPSs was modified by using soybean oil. A new peak emerged at 1745 cm−1 of the modified MCC was attributed to the C = O stretching from esters in the Fourier transform infrared spectra. The results of X-ray diffraction showed that the crystalline structure of MCC was not destroyed during the modification. The esterified microcrystalline cellulose (E-MCC) displayed a higher thermal stability. The effects of MCC and E-MCC on the structural, mechanical, and barrier properties of thermoplastic starch (TPS) were studied. The results showed that E-MCC was dispersed better in the composite films than MCC. TPS was incorporated with 5wt% E-MCC had tensile strength of 5.21 MPa, Young’s modulus equally of 38.87 MPa, and elongation at break of 33.72%. Moreover, the TPS/E-MCC films exhibited better water vapor barrier properties. This study proves that MCC obtained from BPSs can be used as composites filler, and the modified MCC displayed a higher affinity for thermoplastic starch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rai P, Mehrotra S, Priya S, Gnansounou E, Shar Ma SK (2021) Recent advances in the sustainable design and applications of biodegradable polymers. Biores Technol 325(1):739–745. https://doi.org/10.1016/j.biortech.2021.124739

    Article  Google Scholar 

  2. Baghaei B, Skrifvars M (2020) All-cellulose composites: a review of recent studies on structure, properties and applications. Molecules 25(12):2836. https://doi.org/10.3390/molecules25122836

    Article  Google Scholar 

  3. Diarsa M, Gupte A (2021) Preparation, characterization and its potential applications in Isoniazid drug delivery of porous microcrystalline cellulose from banana pseudostem fibers. 3 Biotech 11(7):730–739. https://doi.org/10.1007/s13205-021-02838-0

    Article  Google Scholar 

  4. Hasanin MS, Kassem N, Hassan ML (2021) Preparation and characterization of microcrystalline cellulose from olive stones. Biomass Conversion and Biorefinery 115:1–8. https://doi.org/10.1007/s13399-021-01423-y

    Article  Google Scholar 

  5. Ichi HH, Kouini AB, Kian LK, Asim M, Jawaid M (2021) Extraction and characterization of microcrystalline cellulose from date palm fibers using successive chemical treatments. Journal of Polymers and the Environment 29:1–10. https://doi.org/10.1007/s10924-020-02012-2

    Article  Google Scholar 

  6. Nasution H, Suherman P, Kelvin Winny (2020) Mechanical properties of microcrystalline cellulose from coconut fiber reinforced waste styrofoam composite: the effect of compression molding temperature. IOP Conference Series Materials Science and Engineering 1003(1):121–125. https://doi.org/10.1088/1757-899X/1003/1/012125

    Article  Google Scholar 

  7. Vc A, Fa B, At A (2020) Preparation of microcrystalline cellulose from residual Rose stems (Rosa spp.) by successive delignification with alkaline hydrogen peroxide - ScienceDirect. Int J Biol Macromol 155:324–329. https://doi.org/10.1016/j.ijbiomac.2020.03.222

    Article  Google Scholar 

  8. Abu-Thabit NY, Judeh AA, Hakeem AS, Ul-Hamid A, Ahmad A (2020) Isolation and characterization of microcrystalline cellulose from date seeds (Phoenix dactylifera L.). Int J Biol Macromol 155:730–739. https://doi.org/10.1016/j.ijbiomac.2020.03.255

    Article  Google Scholar 

  9. Shao X, Wang J, Liu Z, Hu N, Xu Y (2020) Preparation and characterization of porous microcrystalline cellulose from corncob. Ind Crops Prod 151:112–117. https://doi.org/10.1016/j.indcrop.2020.112457

    Article  Google Scholar 

  10. Hernández-Varela J, Chanona-Pérez JJ, Hernández PR, Altamirano SV et al (2020) Biodegradable polymers: new alternatives using nanocellulose and agroindustrial residues. Microsc Microanal 26(2):356–359. https://doi.org/10.1017/S1431927620014373

    Article  Google Scholar 

  11. Chct A, Ss B, Mkmh C, Zng D, Mhh A (2020) The improved adsorbent properties of microcrystalline cellulose from oil palm fronds through immobilization technique. Surfaces and Interfaces 20:614–620. https://doi.org/10.1016/j.surfin.2020.100614

    Article  Google Scholar 

  12. Yulina R, Gustiani RS, Kasipah C, Sukardan MD (2020) Preparation of microcrystalline cellulose from cotton yarn spinning mills wastes: effect of pretreatment and hydrolysis reaction condition on the product characteristics. E3S Web of Conferences 148(2):2004–2010. https://doi.org/10.1051/e3sconf/202014802004

    Article  Google Scholar 

  13. Tarchoun AF, Trache D, Klapötke TM, Derradji M, Bessa W (2019) Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media. Cellulose 26(13–14):7635–7651. https://doi.org/10.1007/s10570-019-02672-x

    Article  Google Scholar 

  14. Merci A, Marim RG, Urbano A, Mali S (2019) Films based on cassava starch reinforced with soybean hulls or microcrystalline cellulose from soybean hulls. Food Packag Shelf Life 20(5):141–146. https://doi.org/10.1016/j.fpsl.2019.100321

    Article  Google Scholar 

  15. Moreno G, Ramirez K, Esquivel M, Jimenez G (2019) Biocomposite films of polylactic acid reinforced with microcrystalline cellulose from pineapple leaf fibers. Journal of Renewable Materials 7(1):9–20. https://doi.org/10.32604/jrm.2019.00017

    Article  Google Scholar 

  16. Liu Y, Liu A, Ibrahim SA, Yang H, Huang W (2018) Isolation and characterization of microcrystalline cellulose from pomelo peel. Int J Biol Macromol 111:717–721. https://doi.org/10.1016/j.ijbiomac.2018.01.098

    Article  Google Scholar 

  17. Tong Z, Zhongzheng C et al (2018) Preparation and characterization of microcrystalline cellulose (MCC) from tea waste. Carbohyd Polym 184(15):164–170. https://doi.org/10.1016/j.carbpol.2017.12.024

    Article  Google Scholar 

  18. Fan GZ, Wang YX, Song GS, Yan JT, Li JF (2017) Preparation of microcrystalline cellulose from rice straw under microwave irradiation. J Appl Polym Sci 134(22):1–8. https://doi.org/10.1002/app.44901

    Article  Google Scholar 

  19. Chen G, Kewei Z et al (2018) Polysaccharides from bamboo shoots processing by-products: new insight into extraction and characterization. Food Chem 245:1113–1123. https://doi.org/10.1016/j.foodchem.2017.11.059

    Article  Google Scholar 

  20. Nirmala C, Bisht MS, Laishram M (2014) Bioactive compounds in bamboo shoots: health benefits and prospects for developing functional foods. Int J Food Sci Technol 49(6):1425–1431. https://doi.org/10.1111/ijfs.12470

    Article  Google Scholar 

  21. Chen G, Fang C, Ran CX, Tan Y et al (2019) Comparison of different extraction methods for polysaccharides from bamboo shoots ( Chimonobambusa quadrangularis ) processing by-products. Int J Biol Macromol 130:903–914. https://doi.org/10.1016/j.ijbiomac.2019.03.038

    Article  Google Scholar 

  22. Zhang F, Ran CX, Zheng J, Ding Y, Chen G (2018) Polysaccharides obtained from bamboo shoots (Chimonobambusa quadrangularis ) processing by-products: New insight into ethanol precipitation and characterization. Int J Biol Macromol 112:951–960. https://doi.org/10.1016/j.ijbiomac.2018.01.197

    Article  Google Scholar 

  23. Wang CZ, Zhang HY, Li WJ, Ye JZ (2015) Chemical constituents and structural characterization of polysaccharides from four typical bamboo species leaves. Molecules 20(3):4162–4179. https://doi.org/10.3390/molecules20034162

    Article  Google Scholar 

  24. Chen G, Ran C, Li C, Xiong Z, Ma L (2020) Comparisons of prebiotic activity of polysaccharides from shoot residues of bamboo (Chimonobambusa quadrangularis) via different ethanol concentrations. J Food Biochem 44(5):351–359. https://doi.org/10.1111/jfbc.13171

    Article  Google Scholar 

  25. Li K, Wang X, Wang J, Zhang J (2015) Benefits from additives and xylanase during enzymatic hydrolysis of bamboo shoot and mature bamboo. Biores Technol 192:424–431. https://doi.org/10.1016/j.biortech.2015.05.100

    Article  Google Scholar 

  26. Eaton MD, Domene-López D, Wang Q, Montalbán MG, Shull KR (2021) Exploring the effect of humidity on thermoplastic starch films using the quartz crystal microbalance. Carbohyd Polym 261:117–127. https://doi.org/10.1016/j.carbpol.2021.117727

    Article  Google Scholar 

  27. Fu D, Netravali AN (2021) “Green” composites based on liquid crystalline cellulose fibers and avocado seed starch. J Mater Sci 56(10):6204–6216. https://doi.org/10.1007/s10853-020-05676-2

    Article  Google Scholar 

  28. Chen J, Chen F, Long Z, Dai L et al (2019) Hydroxypropyl starch-based films reinforced by incorporation of alkalized microcrystalline cellulose. Polym Compos 40(S1):631–634. https://doi.org/10.1002/pc.25048

    Article  Google Scholar 

  29. Shahmaleki M, Beigmohammadi F, Movahedi F (2020) Cellulose-reinforced starch biocomposite: optimization of the effects of filler and various plasticizers using design–expert method. Starch - Starke 48(5):228–235. https://doi.org/10.1002/STAR.202000028

    Article  Google Scholar 

  30. Akihiro, Sato, Daisuke, Kabusaki,et al. (2016) Surface modification of cellulose nanofibers with alkenyl succinic anhydride for high-density polyethylene reinforcement. Composites Part A Applied Science & Manufacturing, 114-118.https://doi.org/10.1016/j.compositesa.2015.11.009

  31. Jamaluddin N, Hsu YI, Asoh TA, Uyama H (2021) Effects of acid-anhydride-modified cellulose nanofiber on poly(lactic acid) composite films. Nanomaterials 11(3):753. https://doi.org/10.3390/nano11030753

    Article  Google Scholar 

  32. Balasubramaniam S, Patel AS, Nayak B (2020) Surface modification of cellulose nanofiber film with fatty acids for developing renewable hydrophobic food packaging. Food Packag Shelf Life 26:581–587. https://doi.org/10.1016/j.fpsl.2020.100587

    Article  Google Scholar 

  33. Fan GZ, Wang YX, Song GS, Yan JT, Li JF (2017) Preparation of microcrystalline cellulose from rice straw under microwave irradiation. J Appl Polym Sci 134(22):153–164. https://doi.org/10.1002/app.44901

    Article  Google Scholar 

  34. Xiaogang Dong A, Yan Dong A, Man Jiang B, Liyan Wang A et al (2013) Modification of microcrystalline cellulose by using soybean oil for surface hydrophobization. Industrial Crops and Products 46(46):301–303. https://doi.org/10.1016/j.indcrop.2013.02.010

    Article  Google Scholar 

  35. Segal L, Creely J, MartinJr A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794. https://doi.org/10.1177/004051755902901003

    Article  Google Scholar 

  36. Azubuike CP, Okhamafe AO (2012) Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs. Int J Recycling Organ Waste Agriculture 3(1):9–12. https://doi.org/10.1186/2251-7715-1-9

    Article  Google Scholar 

  37. Lv W, Xia ZGN, Song Y, Wang P, Jiang W (2021) Using microwave assisted organic acid treatment to separate cellulose fiber and lignin from kenaf bast. Ind Crops Prod 171:113–134. https://doi.org/10.1016/j.indcrop.2021.113934

    Article  Google Scholar 

  38. Lin Q, Huang Y, Yu W (2021) Effects of extraction methods on morphology, structure and properties of bamboo cellulose. Ind Crops Prod 169:613–620. https://doi.org/10.1016/J.INDCROP.2021.113640

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Anhui Science and Technology Important Special Project (No.202003a06020007) and the Doctoral research project of Anhui Academy of Agricultural Sciences (No.2021YL050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Jiang.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Yang, S., Zhu, Q. et al. Preparation and characterization of thermoplastic starch/bamboo shoot processing by-product microcrystalline cellulose composites. Biomass Conv. Bioref. 13, 12105–12114 (2023). https://doi.org/10.1007/s13399-021-01977-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01977-x

Keywords

Navigation