Skip to main content
Log in

New numerical simulation of the oscillatory phenomena occurring in the bioethanol production process

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The process of bioethanol production has been characterized with a structured and nonsegregated form of yeast growth dynamics. In this work, a geometric numerical method is applied to obtain the approximate solution of the oscillatory phenomena transpiring in the process of bioethanol production. This method is called group preserving scheme which is based on Lie group, proper for solving ordinary differential equations. In this regard, The Minkowski Cayley transformation is used to create this numerical method to get the approximate solutions of the problems. Moreover, figures are provided to show the reliability and accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

G:

glucose

E:

ethanol

0:

oxygen

X :

biomass

C:

intracellular carbohydrate

e 1 :

enzyme catalysing reaction R

e 2 :

enzyme catalysing reaction R2

e 3 :

enzyme catalysing reaction R

R 1 :

fermentation of glucose

R 2 :

oxidation of ethanol

R 1 :

oxidation of glucose

r 1 − :

reaction rate of R1

r2 :

reaction rate of R2

r 3 :

reaction rate of R3

r 4 :

formation rate of e1

r 5 :

formation rate of e2

r 6 :

formation rate of e3

References

  1. Martins F, Felgueiras C, Smitkova M, Caetano N (2019) Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies 12:964

    Article  Google Scholar 

  2. Kiran B, Kumar R, Deshmukh D (2014) Perspectives of microalgal biofuels as a renewable source of energy. Energy Convers Manage 88:1228–1244

    Article  Google Scholar 

  3. Astudillo ICP, Alzate CAC (2011) Importance of stability study of continuous systems for ethanol production. J Biotechnol 151:43–55

    Article  Google Scholar 

  4. Azhar SHM, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Faik AAM, Rodrigues KF (2017) Yeasts in sustainable bioethanol production: a review. Biochem Biophys Rep 10:52–61

    Google Scholar 

  5. Dien BS, Cotta MA, Jeffies TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    Article  Google Scholar 

  6. Lei F, Olsson L, Jørgensen SB (2004) Dynamic effcts related to steady-state multiplicity in continuous Saccharomyces cerevisiae cultivations. Biotechnol Bioeng 88:838–848

    Article  Google Scholar 

  7. Sridhar LM (2011) Elimination of oscillations in fermentation processes. AICHE J 57:2397–2405

    Article  Google Scholar 

  8. Graham DW, Knapp CW, Van Vleck ES, Bloor K, Lane TB, Graham CE (2007) Experimental demonstration of chaotic instability in biological nitrifiation. ISME J 1:385–393

    Article  Google Scholar 

  9. Ciesielski A, Grzywacz R (2019) The dumping of oscillatory phenomena in the process of bioethanol production by continuous fermentation. Tech Trans 3:119–132

    Article  Google Scholar 

  10. Chen C. -I., McDonald KA, Bisson L (1990) Oscillatory behaviour of Saccharomyces cerevisiae in continuous culture: effcts of pH and nitrogen levels. Biotechnol Bioeng 36:19–27

    Article  Google Scholar 

  11. Chen C. -I., McDonald KA (1990) Oscillatory behaviour of Saccharomyces cerevisiae in continuous culture: II. Analysis of cell synchronization and metabolism. Biotechnol Bioeng 36:28–38

    Article  Google Scholar 

  12. Keulers M, Satroutdinov AD, Suzuki T, Kuriyama H (1996) Synchronization affctor of autonomous short-period-sustained oscillations of Saccharomyces cerevisiae. Yeast 12:673–682

    Article  Google Scholar 

  13. Satroutdinov AD, Kuriyama H, Kobayashi H (1992) Oscillatory metabolism of Saccharomyces cerevisiae in continuous culture. FEMS Microbiol Lett 98:261–268

    Article  Google Scholar 

  14. Gustavsson AK, van Niekerk DD, Adiels CB, du Preez FB, Goksör M, Snoep JL (2012) Sustained glycolytic oscillations in individual isolated yeast cells. FEBS J 279:2837–2847

    Article  Google Scholar 

  15. Schrøder TD, Özalp VC, Lunding A, Jernshøj KD, Olsen LF (2013) An experimental study of the regulation of glycolytic oscillations in yeast. FEBS J 280:6033–6044

    Article  Google Scholar 

  16. Gustavsson AK, van Niekerk DD, Adiels CB, Kooi B, Goksör M, Snoep JL (2014) Allosteric regulation of phosphofructokinase controls the emergence of glycolytic oscillations in isolated yeast cells. FEBS J 281:2784–2793

    Article  Google Scholar 

  17. Lloyd D, Eshantha L, Salgado J, Turner MP, Murray DB (2002) Respiratory oscillations in yeast: clock-driven mitochondrial cycles of energization. FEBS Lett 51:41–44

    Article  Google Scholar 

  18. Lloyd D, Lemar KM, Eshantha L, Salgado J, Gould TM, Murray DB (2003) Respiratory oscillations in yeast: mitochondrial reactive oxygen species, apoptosis and time; a hypothesis. FEMS Yeast Res 3:333–339

    Article  Google Scholar 

  19. Robertson JB, Stowers CHC, Boczko E, Johnson CH (2008) Real-time luminescence monitoring of cell-cycle and respiratory oscillations in yeast. PNAS 105:17988–17993

    Article  Google Scholar 

  20. Silverman SJ, Petti AA, Slavov N, Parsons L, Briehof R, Thiberge SY, Zenklusen D, Gandhi SJ, Larson DR, Singer RH, Botstein D (2010) Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate. PNAS 107:6946–6951

    Article  Google Scholar 

  21. Ramkrishna D (2003) On modeling of bioreactors for control. J Process Contr 13:581–589

    Article  Google Scholar 

  22. Young JD (2015) Learning from the steersman: a natural history of cybernetic models. Ind Eng Chem Res 54:10162–10169

    Article  Google Scholar 

  23. Ramkrishna D, Song HS (2012) Dynamic models of metabolism: review of the cybernetic approach. AIChE J 58:986–997

    Article  Google Scholar 

  24. Jones KD, Kompala DS (1999) Cybernetic modelling of the growth dynamics of Saccharomyces cerevisiae in batch and continuous cultures. J Biotechnol 71:105–131

    Article  Google Scholar 

  25. Song HS, Ramkrishna D (2010) Prediction of metabolic function from limited data: lumped hybrid cybernetic modeling (l-HCM). Biotechnol Bioeng 106:271–284

    Google Scholar 

  26. Kim JI, Varner JD, Ramkrishna D (2008) A hybrid model of anaerobic E. Coli GJT001: combination of elementary flx modes and cybernetic variables. Biotechnol Prog 24:993–1006

    Article  Google Scholar 

  27. Metzler R, Klafter J (2000) Subdiffusive transport close to thermal equilibrium: from the Langevin equation to fractional diffusion. Phys Rev E 61:6308–6311

    Article  Google Scholar 

  28. Ciesielski A, Grzywacz R (2019) Nonlinear analysis of cybernetic model for aerobic growth of Saccharomyces cerevisiae in a continuous stirred tank bioreactor. Static bifurcations. Biochem Eng J 146:88–96

    Article  Google Scholar 

  29. Zhang Y, Henson MA (2001) Bifurcation analysis of continuous biochemical reactor models. Biotechnol Prog 17:647–660

    Article  Google Scholar 

  30. Jones KD, Kompala DS (1999) Cybernetic modelling of the growth dynamics of Saccharomyces cerevisiae in batch and continuous cultures. J Biotechnol 71:105–131

    Article  Google Scholar 

  31. Liu CS (2001) Cone of non-linear dynamical system and group preserving schemes. Int J Non Linear Mech 36(7):1047–1068

    Article  MathSciNet  MATH  Google Scholar 

  32. Partohaghighi M, Ink M, Baleanu D, Moshoko SP (2019) Ficitious time integration method for solving the time fractional gas dynamics equation. Thermal Sci 23(Suppl. 6):2009–2016

    Article  Google Scholar 

  33. Inc M, Parto-Haghighi M, Akinlar MA, Chu YM (2020) New numerical solutions of fractional-order Korteweg-de Vries equation. Results Phys 19:103326

    Article  Google Scholar 

  34. Inc M, Partohaghighi M, Akinlar MA, Agarwal P, Chu YM (2020) New solutions of fractional-order Burger-Huxley equation. Res Phys 18:103290

    Google Scholar 

  35. Hashemi MS, Baleanu D, Parto-Haghighi M, Darvishi E (2015) Solving the time fractional diffusion equation using a Lie group integrator. Therm Sci 19:S77-S83

    Article  Google Scholar 

  36. Singh A, Das S, Craciun EM (2019) The effect of thermo-mechanical loading on the edge crack of finite length in an infinite orthotropic strip. Mech Compos Mater 55(3):285–296

    Article  Google Scholar 

  37. Singh A, Das S, Altenbach H, Craciun EM (2020) Semi-infinite moving crack in an orthotropic strip sandwiched between two identical half planes. Z Angew Math Mech ZAMM 100(2)

Download references

Acknowledgements

The authors would like to express profound gratitude to referees for deeper review of this paper and the referee’s useful suggestions that led to an improved presentation of the paper.

The second author would like to thank 2020-SÍÜFEB-022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihad Asad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Authors’ statement

The authors state that they have read the manuscript and equally contributed.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Partohaghighi, M., Akgül, A., Akgül, E. et al. New numerical simulation of the oscillatory phenomena occurring in the bioethanol production process. Biomass Conv. Bioref. 13, 11203–11217 (2023). https://doi.org/10.1007/s13399-021-01949-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01949-1

Keywords

Navigation