Skip to main content

Advertisement

Log in

Valorization of biomass-derived furfurals: reactivity patterns, synthetic strategies, and applications

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

This article has been updated

Abstract

The expertise of synthetic organic chemistry accumulated over the past century has been instrumental in converting biomass to fuels, chemicals, and materials. Particular emphasis has been attributed to using eco-friendly reagents and reaction conditions by adhering to the principles of green chemistry. Catalysis remains at the heart of organic synthesis and has a ubiquitous presence in the organic chemistry literature. Not surprisingly, catalytic processes are increasingly used in the chemistry of renewables under commercially relevant and environmentally acceptable conditions. In this review, the synthesis of various biofuels and renewable chemicals from biomass-derived furfural and 5-(hydroxymethyl)furfural has been elaborated. Synthetic upgrading of furfurals has been shown in the light of chemical modifications of the reactive sites present in them. This review aims to provide a critical understanding of the influence of synthetic organic chemistry in biomass value addition via the furanic platform. This work will encourage the researchers to improve the existing synthetic pathways, develop new synthetic strategies, and broaden the scope of applications for biorenewable products.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4
Scheme 5
Fig. 2
Scheme 6
Scheme 7
Scheme 8
Scheme 9

Similar content being viewed by others

Change history

  • 22 September 2021

    The Graphical Abstract, Schemes 1 and 7 have been replaced with the updated version.

References

  1. Nicolaou KC (2014) Organic synthesis: the art and science of replicating the molecules of living nature and creating others like them in the laboratory. Proc R Soc A 470:20130690. https://doi.org/10.1098/rspa.2013.0690

    Article  Google Scholar 

  2. Wittcoff HA, Reuben BG, Plotkin JS (2012) Chemicals from natural gas and petroleum. In: Industrial Organic Chemicals. John Wiley & Sons, Ltd, pp 93–138. https://doi.org/10.1002/9781118229996.ch4

  3. Roddy DJ (2013) Biomass in a petrochemical world. Interface Focus 3:20120038. https://doi.org/10.1098/rsfs.2012.0038

    Article  Google Scholar 

  4. Lee RP (2019) Alternative carbon feedstock for the chemical industry?-assessing the challenges posed by the human dimension in the carbon transition. J Cleaner Prod 219:786–796. https://doi.org/10.1016/j.jclepro.2019.01.316

    Article  Google Scholar 

  5. Govil T, Wang J, Samanta D, David A, Tripathi A, Rauniyar S, Salem DR, Sani RK (2020) Lignocellulosic feedstock: a review of a sustainable platform for cleaner production of nature’s plastics. J Cleaner Prod 270:122521. https://doi.org/10.1016/j.jclepro.2020.122521

    Article  Google Scholar 

  6. Khoo HH, Ee WL, Isoni V (2016) Bio-chemicals from lignocellulose feedstock: sustainability, LCA and the green conundrum. Green Chem 18:1912–1922. https://doi.org/10.1039/C5GC02065D

  7. Mayer RA (2016) Handbook of petroleum refining processes, 4th ed. McGraw-Hill Education

  8. Corma A, Corresa E, Mathieu Y, Sauvanaud L, Al-Bogami S, Al-Ghrami MS, Bourane A, (2017) Crude oil to chemicals: light olefins from crude oil. Catal Sci Technol 7:12–46. https://doi.org/10.1039/C6CY01886F

    Article  Google Scholar 

  9. Levi PG, Cullen JM (2018) Mapping global flows of chemicals: from fossil fuel feedstocks to chemical products. Environ Sci Technol 52:1725–1734. https://doi.org/10.1021/acs.est.7b04573

    Article  Google Scholar 

  10. Maitlis P, Haynes A (2006) Syntheses based on carbon monoxide. In: Metal-catalysis in Industrial Organic Processes. pp 114–162. https://doi.org/10.1039/9781847555328-00114

  11. Sheldon RA, Arends WCE, Hanefeld U (2007) Introduction: green chemistry and catalysis. In: Green Chemistry and Catalysis. John Wiley & Sons, Ltd, pp 1–47. https://doi.org/10.1002/9783527611003.ch1

  12. de Jong E, Jungmeier G (2015) Biorefinery concepts in comparison to petrochemical refineries. In: Industrial biorefineries & white biotechnology. Elsevier, pp 3–33. https://doi.org/10.1016/B978-0-444-63453-5.00001-X

  13. Yadav VG, Yadav GD, Patankar SC (2020) The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-à-vis sustainability and the environment. Clean Techn Environ Policy 22:1757–1774. https://doi.org/10.1007/s10098-020-01945-5

    Article  Google Scholar 

  14. Isikgor HF, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559. https://doi.org/10.1039/C5PY00263J

    Article  Google Scholar 

  15. Putro JN, Soetaredjo FE, Lin S-Y, Ju Y-H, Ismadji S (2016) Pretreatment and conversion of lignocellulose biomass into valuable chemicals. RSC Adv 6:46834–46852. https://doi.org/10.1039/C6RA09851G

    Article  Google Scholar 

  16. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. https://doi.org/10.1021/ie801542g

    Article  Google Scholar 

  17. Delidovich I, Leonhard K, Palkovits R (2014) Cellulose and hemicellulose valorisation: an integrated challenge of catalysis and reaction engineering. Energy Environ Sci 7:2803–2830. https://doi.org/10.1039/C4EE01067A

    Article  Google Scholar 

  18. Mei Q, Shen X, Liu H, Han B (2019) Selectively transform lignin into value-added chemicals. Chin Chem Lett 30:15–24. https://doi.org/10.1016/j.cclet.2018.04.032

    Article  Google Scholar 

  19. Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754–793. https://doi.org/10.1039/C0GC00401D

    Article  Google Scholar 

  20. Mittal A, Pilath HM, Johnson DK (2020) Direct conversion of biomass carbohydrates to platform chemicals: 5-hydroxymethylfurfural (HMF) and furfural. Energy Fuels 34:3284–3293. https://doi.org/10.1021/acs.energyfuels.9b04047

    Article  Google Scholar 

  21. Mascal M, Dutta S (2014) Chemical-catalytic approaches to the production of furfurals and levulinates from biomass. In: Nicholas KM (ed) Selective Catalysis for Renewable Feedstocks and Chemicals. Springer International Publishing, pp 41–83. https://doi.org/10.1007/128_2014_536

  22. Fan W, Verrier C, Queneau Y, Popowycz F (2019) 5-Hydroxymethylfurfural (HMF) in organic synthesis: a review of its recent applications towards fine chemicals. Curr Org Synth 16:583–614. https://doi.org/10.2174/1570179416666190412164738

    Article  Google Scholar 

  23. Menegazzo F, Ghedini E, Signoretto M (2018) 5-Hydroxymethylfurfural (HMF) production from real biomasses. Molecules 23:2201. https://doi.org/10.3390/molecules23092201

    Article  Google Scholar 

  24. Luo Y, Li Z, Li X, Liu X, Fan J, Clark JH, Hu C (2019) The production of furfural directly from hemicellulose in lignocellulosic biomass: a review. Catal Today 319:14–24. https://doi.org/10.1016/j.cattod.2018.06.042

    Article  Google Scholar 

  25. Danon B, Marcotullio G, de Jong W (2014) Mechanistic and kinetic aspects of pentose dehydration towards furfural in aqueous media employing homogeneous catalysis. Green Chem 16:39–54. https://doi.org/10.1039/C3GC41351A

    Article  Google Scholar 

  26. Xia H, Xu S, Hu H, An J, Li C (2018) Efficient conversion of 5-hydroxymethylfurfural to high-value chemicals by chemo- and bio-catalysis. RSC Adv 8:30875–30886. https://doi.org/10.1039/C8RA05308A

    Article  Google Scholar 

  27. Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, Granados ML (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9:1144–1189. https://doi.org/10.1039/C5EE02666K

    Article  Google Scholar 

  28. Li S, Dong M, Yang J, Cheng X, Shen X, Liu S, Wang Z-Q, Gong X-Q, Liu H, Han B (2021) Selective hydrogenation of 5-(hydroxymethyl)furfural to 5-methylfurfural over single atomic metals anchored on Nb2O5. Nat Commun 12:584. https://doi.org/10.1038/s41467-020-20878-7

    Article  Google Scholar 

  29. Sun G, An J, Hu H, Li C, Zuo S, Xia H (2019) Green catalytic synthesis of 5-methylfurfural by selective hydrogenolysis of 5-hydroxymethylfurfural over size-controlled Pd nanoparticle catalysts. Catal Sci Technol 9:1238–1244. https://doi.org/10.1039/C9CY00039A

    Article  Google Scholar 

  30. Dutta S, Mascal M (2014) Novel pathways to 2,5-dimethylfuran via biomass-derived 5-(chloromethyl)furfural. ChemSusChem 7:3028–3030. https://doi.org/10.1002/cssc.201402702

    Article  Google Scholar 

  31. Galkin KI, Ananikov VP (2019) Towards improved biorefinery technologies: 5-methylfurfural as a versatile C6 platform for biofuels development. ChemSusChem 12:185–189. https://doi.org/10.1002/cssc.201802126

    Article  Google Scholar 

  32. Dai J (2021) Synthesis of 2,5-diformylfuran from renewable carbohydrates and its applications: a review. Green Energy Environ 6:22–32. https://doi.org/10.1016/j.gee.2020.06.013

    Article  Google Scholar 

  33. Hong M, Min J, Wu S, Cui H, Zhao Y, Li J, Wang S (2019) Metal nitrate catalysis for selective oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran under oxygen atmosphere. ACS Omega 4:7054–7060. https://doi.org/10.1021/acsomega.9b00391

    Article  Google Scholar 

  34. Lv G, Wang H, Yang Y, Deng T, Chen C, Zhu Y, Hou X (2016) Direct synthesis of 2,5-diformylfuran from fructose with graphene oxide as a bifunctional and metal-free catalyst. Green Chem 18:2302–2307. https://doi.org/10.1039/C5GC02794B

    Article  Google Scholar 

  35. Mittal N, Nisola GM, Malihan LB, Seo JG, Lee S-P, Chung W-J (2014) Metal-free mild oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Korean J Chem Eng 31:1362–1367. https://doi.org/10.1007/s11814-014-0036-0

    Article  Google Scholar 

  36. Zhang W, Meng T, Tang J, Zhuang W, Zhou Y, Wang J (2017) Direct synthesis of 2,5-diformylfuran from carbohydrates using high-silica MOR zeolite-supported isolated vanadium species. ACS Sustainable Chem Eng 5:10029–10037. https://doi.org/10.1021/acssuschemeng.7b02002

    Article  Google Scholar 

  37. Takagaki A, Takahashi M, Nishimura S, Ebitani K (2011) One-pot synthesis of 2,5-diformylfuran from carbohydrate derivatives by sulfonated resin and hydrotalcite-supported ruthenium catalysts. ACS Catal 1:1562–1565. https://doi.org/10.1021/cs200456t

    Article  Google Scholar 

  38. Balakrishnan M, Sacia ER, Bell AT (2012) Etherification and reductive etherification of 5-(hydroxymethyl)furfural : 5-(alkoxymethyl)furfurals and 2,5-bis(alkoxymethyl)furans as potential bio-diesel candidates. Green Chem 14:1626–1634. https://doi.org/10.1039/C2GC35102A

    Article  Google Scholar 

  39. Chen B, Yan G, Chen G, Feng Y, Zeng X, Sun Y, Tang X, Lei T, Lin L (2020) Recent progress in the development of advanced biofuel 5-ethoxymethylfurfural. BMC Energy 2:2. https://doi.org/10.1186/s42500-020-00012-5

    Article  Google Scholar 

  40. Liu X, Wang R (2018) Upgrading of carbohydrates to the biofuel candidate 5-ethoxymethylfurfural (EMF). Int J Chem Eng 2018:e2316939. https://doi.org/10.1155/2018/2316939

    Article  Google Scholar 

  41. Bing L, Zhang Z, Deng K (2012) Efficient one-pot synthesis of 5-(ethoxymethyl)furfural from fructose catalyzed by a novel solid catalyst. Ind Eng Chem Res 51:15331–15336. https://doi.org/10.1021/ie3020445

    Article  Google Scholar 

  42. Alipour S, Omidvarborna H, Kim D-S (2017) A review on synthesis of alkoxymethyl furfural, a biofuel candidate. Renewable Sustainable Energy Rev 71:908–926. https://doi.org/10.1016/j.rser.2016.12.118

    Article  Google Scholar 

  43. Mascal M, Nikitin EB (2008) Direct, high-yield conversion of cellulose into biofuel. Angew Chem 120:8042–8044. https://doi.org/10.1002/ange.200801594

    Article  Google Scholar 

  44. Onkarappa SB, Dutta S (2019) High-yielding synthesis of 5-(alkoxymethyl)furfurals from biomass-derived 5-(halomethyl)furfural (X=Cl, Br). ChemistrySelect 4:5540–5543. https://doi.org/10.1002/slct.201900279

    Article  Google Scholar 

  45. Shen H, Shan H, Liu L (2020) Evolution process and controlled synthesis of humins with 5-hydroxymethylfurfural (HMF) as model molecule. ChemSusChem 13:513–519. https://doi.org/10.1002/cssc.201902799

    Article  Google Scholar 

  46. Portilla-Zuñiga OM, Martínez JJ, Casella M, Lick DI, Sathicq ÁG, Luque R, Romanelli GP (2020) Etherification of 5-hydroxymethylfurfural using a heteropolyacid supported on a silica matrix. Mol Catal 494:111125. https://doi.org/10.1016/j.mcat.2020.111125

    Article  Google Scholar 

  47. Lee Y-K, Woo M-H, Kim C-H, Kim Y, Lee S-H, Jeong B-S, Chang H-W, Son J-K (2007) Two new benzofurans from gastrodia elata and their DNA topoisomerases I and II inhibitory activities. Planta Med 73:1287–1291. https://doi.org/10.1055/s-2007-981619

    Article  Google Scholar 

  48. Quiroz-Florentino H, Hernández-Benitez RI, Aviña JA, Burgueño-Tapia E, Tamariz J (2011) Total synthesis of naturally occurring furan compounds 5-{[(4-hydroxybenzyl)oxy]methyl}-2-furaldehyde and pichiafuran C. Synthesis 2011:1106–1112. https://doi.org/10.1055/s-0030-1258455

    Article  Google Scholar 

  49. Zhou X, Rauchfuss TB (2013) Production of hybrid diesel fuel precursors from carbohydrates and petrochemicals using formic acid as a reactive solvent. ChemSusChem 6:383–388. https://doi.org/10.1002/cssc.201200718

    Article  Google Scholar 

  50. Ryabukhin DS, Zakusilo DN, Kompanets MO, Tarakanov AA, Boyarskaya IA, Artamonova TO, Khohodorkovskiy MA, Opeida IO, Vasilyev AV, (2016) Superelectrophilic activation of 5-hydroxymethylfurfural and 2,5-diformylfuran: organic synthesis based on biomass-derived products. Beilstein J Org Chem 12:2125–2135. https://doi.org/10.3762/bjoc.12.202

    Article  Google Scholar 

  51. Arias KS, Climent MJ, Corma A, Iborra S (2015) Synthesis of high quality alkyl naphthenic kerosene by reacting an oil refinery with a biomass refinery stream. Energy Environ Sci 8:317–331. https://doi.org/10.1039/C4EE03194F

    Article  Google Scholar 

  52. Shinde S, Deval K, Chikate R, Rode C (2018) Cascade synthesis of 5-(acetoxymethyl)furfural from carbohydrates over Sn-Mont catalyst. ChemistrySelect 3:8770–8778. https://doi.org/10.1002/slct.201802040

    Article  Google Scholar 

  53. Zhang Z, Zhou P (2017) Catalytic aerobic oxidation of 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid and its derivatives. In: Fang Z, Smith Jr Richard L, Qi X (eds) Production of platform chemicals from sustainable resources. Springer, Singapore, pp 171–206. https://doi.org/10.1007/978-981-10-4172-3_6

  54. Jia H-Y, Zong M-H, Zheng G-W, Li N (2019) One-pot enzyme cascade for controlled synthesis of furancarboxylic acids from 5-hydroxymethylfurfural by H2O2 internal recycling. ChemSusChem 12:4764–4768. https://doi.org/10.1002/cssc.201902199

    Article  Google Scholar 

  55. Mei Z-W, Ma L-J, Kawafuchi H, Okihara T, Inokuchi T (2009) TEMPO-mediated oxidation of primary alcohols to carboxylic acids by exploitation of ethers in an aqueous–organic biphase system. Bull Chem Soc Jpn 82:1000–1002. https://doi.org/10.1246/bcsj.82.1000

    Article  Google Scholar 

  56. Saha B, Dutta S, Abu-Omar MM (2012) Aerobic oxidation of 5-hydroxylmethylfurfural with homogeneous and nanoparticulate catalysts. Catal Sci Technol 2:79–81. https://doi.org/10.1039/C1CY00321F

    Article  Google Scholar 

  57. Kumar K, Dahiya A, Patra T, Upadhyayula S (2018) Upgrading of HMF and biomass-derived acids into HMF esters using bifunctional ionic liquid catalysts under solvent free conditions. ChemistrySelect 3:6242–6248. https://doi.org/10.1002/slct.201800903

    Article  Google Scholar 

  58. Benecke HP, King II JL, Kawczak AW, Zehnder II DW, Hirschl EE (2015) Esters of 5-hydroxymethylfurfural and methods for their preparation. U.S. Patent No. 8,247,582

  59. Kang E-S, Hong Y-W, Chae DW, Kim B, Kim B, Kim YJ, Cho JK, Kim YG (2015) From lignocellulosic biomass to furans via 5-acetoxymethylfurfural as an alternative to 5-hydroxymethylfurfural. ChemSusChem 8:1179–1188. https://doi.org/10.1002/cssc.201403252

    Article  Google Scholar 

  60. De S, Dutta S, Saha B (2012) One-pot conversions of lignocellulosic and algal biomass into liquid fuels. ChemSusChem 5:1826–1833. https://doi.org/10.1002/cssc.201200031

    Article  Google Scholar 

  61. Dutta S (2020) Production of 5-(formyloxymethyl)furfural from biomass-derived sugars using mixed acid catalysts and upgrading into value-added chemicals. Carbohyd Res 497:108140. https://doi.org/10.1016/j.carres.2020.108140

    Article  Google Scholar 

  62. Thananatthanachon T, Rauchfuss TB (2010) Efficient production of the liquid fuel 2,5-dimethylfuran from fructose using formic acid as a reagent. Angew Chem 122:6766–6768. https://doi.org/10.1002/anie.201002267

    Article  Google Scholar 

  63. Anchan HN, Dutta S (2021) Recent advances in the production and value addition of selected hydrophobic analogs of biomass-derived 5-(hydroxymethyl)furfural. Biomass Convers Biorefin 1–23. https://doi.org/10.1007/s13399-021-01315-1

  64. Sanda K, Rigal L, Gaset A (1989) Synthèse du 5-bromométhyl- et du 5-chlorométhyl-2-furannecarboxaldéhyde. Carbohyd Res 187:15–23. https://doi.org/10.1016/0008-6215(89)80052-7

    Article  Google Scholar 

  65. Kumari N, Olesen JK, Pedersen CM, Bols M (2011) Synthesis of 5-bromomethylfurfural from cellulose as a potential intermediate for biofuel. Eur J Org Chem 2011:1266–1270. https://doi.org/10.1002/ejoc.201001539

    Article  Google Scholar 

  66. Mascal M (2019) 5-(Chloromethyl)furfural (CMF): a platform for transforming cellulose into commercial products. ACS Sustainable Chem Eng 7:5588–5601. https://doi.org/10.1021/acssuschemeng.8b06553

    Article  Google Scholar 

  67. Galkin KI, Krivodaeva EA, Romashov LV, Zalesskiy SS, Kachala VV, Burykina JV, Ananikov VP (2016) Critical influence of 5-hydroxymethylfurfural aging and decomposition on the utility of biomass conversion in organic synthesis. Angew Chem 128:8478–8482. https://doi.org/10.1002/ange.201602883

    Article  Google Scholar 

  68. Mascal M, Dutta S (2011) Synthesis of the natural herbicide δ-aminolevulinic acid from cellulose-derived 5-(chloromethyl)furfural. Green Chem 13:40–41. https://doi.org/10.1039/C0GC00548G

    Article  Google Scholar 

  69. Karlinskii BY, Romashov LV, Galkin KI, Kislitsyn PG, Ananikov VP (2019) Synthesis of 2-azidomethyl-5-ethynylfuran: a new bio-derived self-clickable building block. Synthesis 51:1235–1242. https://doi.org/10.1055/s-0037-1610414

    Article  Google Scholar 

  70. Chang F, Hsu W-H, Mascal M (2015) Synthesis of anti-inflammatory furan fatty acids from biomass-derived 5-(chloromethyl)furfural. Sustainable Chem Pharm 1:14–18. https://doi.org/10.1016/j.scp.2015.09.002

    Article  Google Scholar 

  71. Chang F, Dutta S, Becnel JJ, Estep AS, Mascal M (2014) Synthesis of the insecticide prothrin and its analogues from biomass-derived 5-(chloromethyl)furfural. J Agric Food Chem 62:476–480. https://doi.org/10.1021/jf4045843

    Article  Google Scholar 

  72. Mascal M, Dutta S (2011) Synthesis of ranitidine (Zantac) from cellulose-derived 5-(chloromethyl)furfural. Green Chem 13:3101–3102. https://doi.org/10.1039/C1GC15537G

    Article  Google Scholar 

  73. Mascal M (2015) 5-(Chloromethyl)furfural is the new HMF: functionally equivalent but more practical in terms of its production from biomass. ChemSusChem 8:3391–3395. https://doi.org/10.1002/cssc.201500940

    Article  Google Scholar 

  74. Brandolese A, Ragno D, Carmine GD, Bernardi T, Bortolini O, Giovannini PP, Pandoli OG, Altomare A, Massi A (2018) Aerobic oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid and its derivatives by heterogeneous NHC-catalysis. Org Biomol Chem 16:8955–8964. https://doi.org/10.1039/C8OB02425A

    Article  Google Scholar 

  75. Wang F, Zhang Z (2017) Cs-substituted tungstophosphate-supported ruthenium nanoparticles: an effective catalyst for the aerobic oxidation of 5-hydroxymethylfurfural into 5-hydroxymethyl-2-furancarboxylic acid. J Taiwan Inst Chem Eng 70:1–6. https://doi.org/10.1016/j.jtice.2016.10.003

    Article  Google Scholar 

  76. Zhang Z, Liu B, Lv K, Sun J, Deng K (2014) Aerobic oxidation of biomass derived 5-hydroxymethylfurfural into 5-hydroxymethyl-2-furancarboxylic acid catalyzed by a montmorillonite K-10 clay immobilized molybdenum acetylacetonate complex. Green Chem 16:2762–2770. https://doi.org/10.1039/C4GC00062E

    Article  Google Scholar 

  77. Donoeva B, Masoud N, de Jongh PE (2017) Carbon support surface effects in the gold-catalyzed oxidation of 5-hydroxymethylfurfural. ACS Catal 7:4581–4591. https://doi.org/10.1021/acscatal.7b00829

    Article  Google Scholar 

  78. Zhao D, Rodriguez-Padron D, Luque R, Len C (2020) Insights into the selective oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid using silver oxide. ACS Sustainable Chem Eng 8:8486–8495. https://doi.org/10.1021/acssuschemeng.9b07170

    Article  Google Scholar 

  79. Davis SE, Zope BN, Davis RJ (2012) On the mechanism of selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Au catalysts. Green Chem 14:143–147. https://doi.org/10.1039/C1GC16074E

    Article  Google Scholar 

  80. Subbiah S, Simeonov SP, Esperança JMSS, Rebelo LPN, Afonso CAM (2013) Direct transformation of 5-hydroxymethylfurfural to the building blocks 2,5-dihydroxymethylfurfural (DHMF) and 5-hydroxymethyl furanoic acid (HMFA) via Cannizzaro reaction. Green Chem 15:2849–2853. https://doi.org/10.1039/C3GC40930A

    Article  Google Scholar 

  81. Jiang Y, Woortman AJJ, Alberda van Ekenstein GOR, Petrović DM, Loos K (2014) Enzymatic synthesis of biobased polyesters using 2,5-bis(hydroxymethyl)furan as the building block. Biomacromol 15:2482–2493. https://doi.org/10.1021/bm500340w

    Article  Google Scholar 

  82. Meng J, Zeng Y, Chen P, Zhang J, Yao C, Fang Z, Ouyang P, Guo K (2020) Flame retardancy and mechanical properties of bio-based furan epoxy resins with high crosslink density. Macromol Mater Eng 305:1900587. https://doi.org/10.1002/mame.201900587

    Article  Google Scholar 

  83. Howell BA, Lazar ST (2019) Biobased plasticizers from carbohydrate-derived 2,5-bis(hydroxymethyl)furan. Ind Eng Chem Res 58:1222–1228. https://doi.org/10.1021/acs.iecr.8b05442

    Article  Google Scholar 

  84. Wang T, Wei J, Liu H, Feng Y, Tang X, Zeng X, Sun Y, Lei T, Lin L (2020) Synthesis of renewable monomer 2,5-bishydroxymethylfuran from highly concentrated 5-hydroxymethylfurfural in deep eutectic solvents. J Ind Eng Chem 81:93–98. https://doi.org/10.1016/j.jiec.2019.08.057

    Article  Google Scholar 

  85. Kucherov FA, Galkin KI, Gordeev EG, Ananikov VP (2017) Efficient route for the construction of polycyclic systems from bioderived HMF. Green Chem 19:4858–4864. https://doi.org/10.1039/C7GC02211E

    Article  Google Scholar 

  86. Hu L, Xu J, Zhou S, He A, Tang X, Lin L, Xu J, Zhao Y (2018) Catalytic advances in the production and application of biomass-derived 2,5-dihydroxymethylfuran. ACS Catal 8:2959–2980. https://doi.org/10.1021/acscatal.7b03530

    Article  Google Scholar 

  87. Zhang J, Wang T, Tang X, Peng L, Wei J, Lin L (2018) Methods in the synthesis and conversion of 2,5-bis-(hydroxylmethyl)furan from bio-derived 5-hydroxymethylfurfural and its great potential in polymerization. BioResources 13:7137–7154

    Article  Google Scholar 

  88. Arias KS, Garcia-Ortiz A, Climent MJ, Corma A, Iborra S (2018) Mutual valorization of 5-hydroxymethylfurfural and glycerol into valuable diol monomers with solid acid catalysts. ACS Sustainable Chem Eng 6:4239–4245. https://doi.org/10.1021/acssuschemeng.7b04685

    Article  Google Scholar 

  89. Kumar K, Pathak S, Upadhyayula S (2021) Acetalization of 5-hydroxymethyl furfural into biofuel additive cyclic acetal using protic ionic liquid catalyst- a thermodynamic and kinetic analysis. Renewable Energy 167:282–293. https://doi.org/10.1016/j.renene.2020.11.084

    Article  Google Scholar 

  90. Kirchhecker S, Dell’Acqua A, Angenvoort A, Spannenberg A, Ito K, Tin S, Taden A, de Vries JG (2021) HMF–glycerol acetals as additives for the debonding of polyurethane adhesives. Green Chem 23:957–965. https://doi.org/10.1039/D0GC04093B

    Article  Google Scholar 

  91. Lanzafame P, Papanikolaou G, Perathoner S, Centi G, Migliori M, Catizzone E, Aloise A, Giordano G (2018) Direct versus acetalization routes in the reaction network of catalytic HMF etherification. Catal Sci Technol 8:1304–1313. https://doi.org/10.1039/C7CY02339A

    Article  Google Scholar 

  92. Nakagawa Y, Tamura M, Tomishige K (2019) Recent development of production technology of diesel- and jet-fuel-range hydrocarbons from inedible biomass. Fuel Process Technol 193:404–422. https://doi.org/10.1016/j.fuproc.2019.05.028

    Article  Google Scholar 

  93. Wu L, Moteki T, Gokhale AA, Flaherty DW, Toste FD (2016) Production of fuels and chemicals from biomass: condensation reactions and beyond. Chem 1:32–58. https://doi.org/10.1016/j.chempr.2016.05.002

    Article  Google Scholar 

  94. James OO, Maity S, Usman LA, Ajanaku KO, Ajani OO, Siyanbola TO, Sahu S, Chaubey R (2010) Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural. Energy Environ Sci 3:1833–1850. https://doi.org/10.1039/B925869H

    Article  Google Scholar 

  95. Yan B, Zang H, Jiang Y, Yu S, Chen EY-X (2016) Recyclable montmorillonite-supported thiazolium ionic liquids for high-yielding and solvent-free upgrading of furfural and 5-hydroxymethylfurfural to C10 and C12 furoins. RSC Adv 6:76707–76715. https://doi.org/10.1039/C6RA14594A

    Article  Google Scholar 

  96. Cywar RM, Wang L, Chen EY-X (2019) Thermally regulated recyclable carbene catalysts for upgrading of biomass furaldehydes. ACS Sustainable Chem Eng 7:1980–1988. https://doi.org/10.1021/acssuschemeng.8b04190

    Article  Google Scholar 

  97. Chang H, Motagamwala AH, Huber GW, Dumesic JA (2019) Synthesis of biomass-derived feedstocks for the polymers and fuels industries from 5-(hydroxymethyl)furfural (HMF) and acetone. Green Chem 21:5532–5540. https://doi.org/10.1039/C9GC01859J

    Article  Google Scholar 

  98. Xia Q-N, Cuan Q, Liu X-H, Gong X-Q, Lu G-Z, Wang Y-Q (2014) Pd/NbOPO4 multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans. Angew Chem, Int Ed 53:9755–9760. https://doi.org/10.1002/anie.201403440

    Article  Google Scholar 

  99. Hronec M, Fulajtárova K, Liptaj T, Štolcová M, Prónayová N, Soták T (2014) Cyclopentanone: a raw material for production of C15 and C17 fuel precursors. Biomass Bioenergy 63:291–299. https://doi.org/10.1016/j.biombioe.2014.02.025

    Article  Google Scholar 

  100. Xu Z, Yan P, Xu W, Jia S, Xia Z, Chung B, Zhang ZC (2014) Direct reductive amination of 5-hydroxymethylfurfural with primary/secondary amines via Ru-complex catalyzed hydrogenation. RSC Adv 4:59083–59087. https://doi.org/10.1039/C4RA10349A

    Article  Google Scholar 

  101. Tan J-N, Ahmar M, Queneau Y (2013) HMF derivatives as platform molecules: aqueous Baylis-Hillman reaction of glucosyloxymethyl-furfural towards new biobased acrylates. RSC Adv 3:17649–17653. https://doi.org/10.1039/C3RA43369B

    Article  Google Scholar 

  102. Yu C, Liu B, Hu L (2001) Efficient Baylis−Hillman reaction using stoichiometric base catalyst and an aqueous medium. J Org Chem 66:5413–5418. https://doi.org/10.1021/jo015628m

    Article  Google Scholar 

  103. Huang Q, Yang F, Cao X, Hu Z, Cheng C (2019) Thermally healable polyurethanes based on furfural-derived monomers via Baylis-Hillman reaction. Macromol Res 27:895–904. https://doi.org/10.1007/s13233-019-7123-3

    Article  Google Scholar 

  104. Han M, Liu X, Zhang X, Pang Y, Xu P, Guo J, Liu Y, Zhang S, Ji S (2017) 5-Hydroxymethyl-2-vinylfuran: a biomass-based solvent-free adhesive. Green Chem 19:722–728. https://doi.org/10.1039/C6GC02723G

    Article  Google Scholar 

  105. Xu Z, Yan P, Liu K, Wan L, Xu W, Li H, Liu X, Zhang ZC (2016) Synthesis of bis(hydroxylmethylfurfuryl)amine monomers from 5-hydroxymethylfurfural. ChemSusChem 9:1255–1258. https://doi.org/10.1002/cssc.201600122

    Article  Google Scholar 

  106. Sattler L, Zerban FW, Clark GL, Chu C-C (1951) The reaction of 2-aminobenzenethiol with Al-doses and with hydroxymethylfurfural. J Am Chem Soc 73:5908–5910. https://doi.org/10.1021/ja01156a554

    Article  Google Scholar 

  107. Mitra J, Zhou X, Rauchfuss T (2014) Pd/C-catalyzed reactions of HMF: decarbonylation, hydrogenation, and hydrogenolysis. Green Chem 17:307–313. https://doi.org/10.1039/C4GC01520G

    Article  Google Scholar 

  108. Dai J, Fu X, Zhu L, Tang J, Guo X, Hu C (2016) One-pot deoxygenation of fructose to furfuryl alcohol by sequential dehydration and decarbonylation. ChemCatChem 8:1379–1385. https://doi.org/10.1002/cctc.201501292

    Article  Google Scholar 

  109. Huang Y-B, Yang Z, Chen M-Y, Dai J-J, Guo Q-X, Fu Y (2013) Heterogeneous palladium catalysts for decarbonylation of biomass-derived molecules under mild conditions. ChemSusChem 6:1348–1351. https://doi.org/10.1002/cssc.201300190

    Article  Google Scholar 

  110. Wang H, Zhu C, Li D, Liu Q, Tan J, Wang C, Cai C, Ma L (2019) Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2,5-dimethylfuran. Renewable Sustainable Energy Rev 103:227–247. https://doi.org/10.1016/j.rser.2018.12.010

    Article  Google Scholar 

  111. Xiao T, Liu X, Xu G, Zhang Y (2021) Phase tuning of ZrO2 supported cobalt catalysts for hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran under mild conditions. Appl Catal, B 295:120270. https://doi.org/10.1016/j.apcatb.2021.120270

    Article  Google Scholar 

  112. Xu H, Wang C (2016) A comprehensive review of 2,5-dimethylfuran as a biofuel candidate. In: Biofuels from Lignocellulosic Biomass. John Wiley & Sons, Ltd, pp 105–129. https://doi.org/10.1002/9783527685318.ch5

  113. Sajid M, Zhao X, Liu D (2018) Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes. Green Chem 20:5427–5453. https://doi.org/10.1039/C8GC02680G

    Article  Google Scholar 

  114. Sousa AF, Vilela C, Fonseca AC, Matos M, Freire CSR, Gruter G-JM, Coelho JFJ, Silvestre AJD (2015) Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polym Chem 6:5961–5983. https://doi.org/10.1039/C5PY00686D

    Article  Google Scholar 

  115. Zhang Z, Deng K (2015) Recent advances in the catalytic synthesis of 2,5-furandicarboxylic acid and its derivatives. ACS Catal 5:6529–6544. https://doi.org/10.1021/acscatal.5b01491

    Article  Google Scholar 

  116. Masoud N, Donoeva B, de Jongh PE (2018) Stability of gold nanocatalysts supported on mesoporous silica for the oxidation of 5-hydroxymethyl furfural to furan-2,5-dicarboxylic acid. Appl Catal, A 561:150–157. https://doi.org/10.1016/j.apcata.2018.05.027

    Article  Google Scholar 

  117. Wojcieszak R, Itabaiana I (2020) Engineering the future: perspectives in the 2,5-furandicarboxylic acid synthesis. Catal Today 354:211–217. https://doi.org/10.1016/j.cattod.2019.05.071

    Article  Google Scholar 

  118. Komanoya T, Kinemura T, Kita Y, Kamata K, Hara M (2017) Electronic effect of ruthenium nanoparticles on efficient reductive amination of carbonyl compounds. J Am Chem Soc 139:11493–11499. https://doi.org/10.1021/jacs.7b04481

    Article  Google Scholar 

  119. Pingen D, Schwaderer JB, Walter J, Wen J, Murray G, Vogt D, Mecking S (2018) Diamines for polymer materials via direct amination of lipid- and lignocellulose-based alcohols with NH3. ChemCatChem 10:3027–3033. https://doi.org/10.1002/cctc.201800365

    Article  Google Scholar 

  120. Xu Y, Jia X, Ma J, Gao J, Xia F, Li X, Xu J (2018) Efficient synthesis of 2,5-dicyanofuran from biomass-derived 2,5-diformylfuran via an oximation–dehydration strategy. ACS Sustainable Chem Eng 6:2888–2892. https://doi.org/10.1021/acssuschemeng.7b03913

    Article  Google Scholar 

  121. Jia X, Ma J, Xia F, Xu Y, Gao J, Xu J (2018) Carboxylic acid-modified metal oxide catalyst for selectivity-tunable aerobic ammoxidation. Nat Commun 9:933. https://doi.org/10.1038/s41467-018-03358-x

    Article  Google Scholar 

  122. Lancien A, Wojcieszak R, Cuvelier E, Duban M, Dhulster P, Paul S, Dumeignil F, Froidevaux R, Houson E (2021) Hybrid conversion of 5-hydroxymethylfurfural to 5-aminomethyl-2-furancarboxylic acid: toward new bio-sourced polymers. ChemCatChem 13:247–259. https://doi.org/10.1002/cctc.202001446

    Article  Google Scholar 

  123. Kraus GA, Lee JJ (2013) A direct synthesis of renewable sulfonate-based surfactants. J Surfact Deterg 16:317–320. https://doi.org/10.1007/s11743-012-1408-2

    Article  Google Scholar 

  124. Dutta S, Bhat NS (2020) Catalytic synthesis of renewable p-xylene from biomass-derived 2,5-dimethylfuran: a mini review. Biomass Convers Biorefin https://doi.org/10.1007/s13399-020-01042-z

    Article  Google Scholar 

  125. Tomás RAF, Bordado JCM, Gomes JFP (2013) p-Xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development. Chem Rev 113:7421–7469. https://doi.org/10.1021/cr300298j

    Article  Google Scholar 

  126. Fei X, Wang J, Zhu J, Wang X, Liu X (2020) Biobased poly(ethylene 2,5-furancoate): no longer an alternative, but an irreplaceable polyester in the polymer industry. ACS Sustainable Chem Eng 8:8471–8485. https://doi.org/10.1021/acssuschemeng.0c01862

    Article  Google Scholar 

  127. Nicklaus CM, Minnaard AJ, Feringa BL, de Vries JG (2013) Synthesis of renewable fine-chemical building blocks by reductive coupling between furfural derivatives and terpenes. ChemSusChem 6:1631–1635. https://doi.org/10.1002/cssc.201300179

    Article  Google Scholar 

  128. Yan L, Greenwood AA, Hossain A, Yang B (2014) A comprehensive mechanistic kinetic model for dilute acid hydrolysis of switchgrass cellulose to glucose, 5-HMF and levulinic acid. RSC Adv 4:23492–23504. https://doi.org/10.1039/C4RA01631A

    Article  Google Scholar 

  129. Liu C, Lu X, Yu Z, Xiong J, Bai H, Zhang R (2020) Production of levulinic acid from cellulose and cellulosic biomass in different catalytic systems. Catalysts 10:1006. https://doi.org/10.3390/catal10091006

    Article  Google Scholar 

  130. Antonetti C, Licursi D, Fulignati S, Valentini G, Raspolli Galletti AM (2016) New frontiers in the catalytic synthesis of levulinic acid: from sugars to raw and waste biomass as starting feedstock. Catalysts 6:196. https://doi.org/10.3390/catal6120196

    Article  Google Scholar 

  131. Pyo S-H, Glaser SJ, Rehnberg N, Hatti-Kaul R (2020) Clean production of levulinic acid from fructose and glucose in salt water by heterogeneous catalytic dehydration. ACS Omega 5:14275–14282. https://doi.org/10.1021/acsomega.9b04406

    Article  Google Scholar 

  132. Dutta S, Bhat NS (2021) Recent advances in the value addition of biomass-derived levulinic acid: a review focusing on its chemical reactivity patterns. ChemCatChem 13:3202–3222. https://doi.org/10.1002/cctc.202100032

    Article  Google Scholar 

  133. Pileidis FD, Titirici M-M (2016) Levulinic acid biorefineries: new challenges for efficient utilization of biomass. ChemSusChem 9:562–582. https://doi.org/10.1002/cssc.201501405

    Article  Google Scholar 

  134. Girisuta B, Heeres HJ (2017) Levulinic acid from biomass: synthesis and applications. In: Fang Z, Smith Jr. RL (ed). Production of Platform Chemicals from Sustainable Resources. Springer, Singapore, pp 143–169. https://doi.org/10.1007/978-981-10-4172-3_5

    Google Scholar 

  135. Fulignati S, Antonetti C, Licursi D, Pieraccioni M, Wilbers E, Heeres HJ, Raspolli Galletti AM (2019) Insight into the hydrogenation of pure and crude HMF to furan diols using Ru/C as catalyst. Appl Catal, A 578:122–133. https://doi.org/10.1016/j.apcata.2019.04.007

    Article  Google Scholar 

  136. Kong X, Zhu Y, Zheng H, Dong F, Zhu Y, Li Y-W (2014) Switchable synthesis of 2,5-dimethylfuran and 2,5-dihydroxymethyltetrahydrofuran from 5-hydroxymethylfurfural over Raney Ni catalyst. RSC Adv 4:60467–60472. https://doi.org/10.1039/C4RA09550B

    Article  Google Scholar 

  137. Pellis A, Byrne FP, Sherwood J, Vastano M, Comerford JW, Farmer TJ (2019) Safer bio-based solvents to replace toluene and tetrahydrofuran for the biocatalyzed synthesis of polyesters. Green Chem 21:1686–1694. https://doi.org/10.1039/C8GC03567A

    Article  Google Scholar 

  138. Yuan Q, Hiemstra K, Meinds TG, Chaabane I, Tang Z, Rohrbach L, Vrijburg W, Verhoeven T, Hensen EJM, van der Veer S, Pescarmona PP, Heeres HJ, Deuss PJ (2019) Bio-based chemicals: selective aerobic oxidation of tetrahydrofuran-2,5-dimethanol to tetrahydrofuran-2,5-dicarboxylic acid using hydrotalcite-supported gold catalysts. ACS Sustainable Chem Eng 7:4647–4656. https://doi.org/10.1021/acssuschemeng.8b03821

    Article  Google Scholar 

  139. Cavani F, Centi G, Perathoner S, Triffiro F (2009) Sustainable industrial chemistry: principles, tools and industrial examples. Wiley

    Book  Google Scholar 

  140. Gilkey MJ, Mironenko AV, Vlachos DG, Xu B (2017) Adipic acid production via metal-free selective hydrogenolysis of biomass-derived tetrahydrofuran-2,5-dicarboxylic acid. ACS Catal 7:6619–6634. https://doi.org/10.1021/acscatal.7b01753

    Article  Google Scholar 

  141. Tuteja J, Choudhary H, Nishimura S, Ebitani K (2014) Direct synthesis of 1,6-hexanediol from HMF over a heterogeneous Pd/ZrP catalyst using formic acid as hydrogen source. ChemSusChem 7:96–100. https://doi.org/10.1002/cssc.201300832

    Article  Google Scholar 

  142. Ohyama J, Kanao R, Esaki A, Satsuma A (2014) Conversion of 5-hydroxymethylfurfural to a cyclopentanone derivative by ring rearrangement over supported Au nanoparticles. Chem Commun 50:5633–5636. https://doi.org/10.1039/C3CC49591D

    Article  Google Scholar 

  143. Mliki K, Trabelsi M (2016) Efficient mild oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2(5H)-furanone, a versatile chemical intermediate. Res Chem Intermed 42:8253–8260. https://doi.org/10.1007/s11164-016-2593-9

    Article  Google Scholar 

  144. Pischetsrieder M, Severin T (1994) Maillard reaction of maltose-Isolation of 4-(glucopyranosyloxy)-5-(hydroxymethyl)-2-methyl-3(2H)-furanone. J Agric Food Chem 42:890–892. https://doi.org/10.1021/jf00040a010

    Article  Google Scholar 

  145. Cottier L, Descotes G, Eymard L, Rapp K (1995) Syntheses of γ-oxo acids or γ-oxo esters by photooxygenation of furanic compounds and reduction under ultrasound: application to the synthesis of 5-aminolevulinic acid hydrochloride. Synthesis 1995:303–306. https://doi.org/10.1055/s-1995-3897

    Article  Google Scholar 

  146. Heugebaert TSA, Stevens CV, Kappe CO (2015) Singlet-oxygen oxidation of 5-hydroxymethylfurfural in continuous flow. ChemSusChem 8:1648–1651. https://doi.org/10.1002/cssc.201403182

    Article  Google Scholar 

  147. Wang Y, Zhao D, Rodríguez-Padrón D, Len C (2019) Recent advances in catalytic hydrogenation of furfural. Catalysts 9:796. https://doi.org/10.3390/catal9100796

    Article  Google Scholar 

  148. Iroegbu AO, Hlangothi SP (2019) Furfuryl alcohol a versatile, eco-sustainable compound in perspective. Chemistry Africa 2:223–239. https://doi.org/10.1007/s42250-018-00036-9

    Article  Google Scholar 

  149. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502. https://doi.org/10.1021/cr050989d

    Article  Google Scholar 

  150. Adkins H, Connor R (1931) The catalytic hydrogenation of organic compounds over copper chromate. J Am Chem Soc 53:1091–1095. https://doi.org/10.1021/ja01354a041

    Article  Google Scholar 

  151. Gong W, Chen C, Zhang Y, Zhou H, Wang H, Zhang H, Zhang Y, Wang G, Zhao H (2017) Efficient synthesis of furfuryl alcohol from H2-hydrogenation/transfer hydrogenation of furfural using sulfonate group modified Cu catalyst. ACS Sustainable Chem Eng 5:2172–2180. https://doi.org/10.1021/acssuschemeng.6b02343

    Article  Google Scholar 

  152. Iqbal S, Liu X, Aldosari OF, Miedziak PJ, Edwards JK, Brett GL, Akram A, King GM, Davies TE, Morgan DJ, Knight DK, Hutchings GJ (2014) Conversion of furfuryl alcohol into 2-methylfuran at room temperature using Pd/TiO2 catalyst. Catal Sci Technol 4:2280–2286. https://doi.org/10.1039/C4CY00184B

    Article  Google Scholar 

  153. Date NS, Hengne AM, Huang K-W, Chikate RC, Rode CV (2018) Single pot selective hydrogenation of furfural to 2-methylfuran over carbon supported iridium catalysts. Green Chem 20:2027–2037. https://doi.org/10.1039/C8GC00284C

    Article  Google Scholar 

  154. Yan K, Chen A (2013) Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu–Cr catalyst. Energy 58:357–363. https://doi.org/10.1016/j.energy.2013.05.035

    Article  Google Scholar 

  155. Green SK, Patet RE, Nikbin N, Williams CL, Chang C-C, Yu J, Gorte RJ, Caratzoulas S, Fan W, Vlachos DG, Dauenhauer PJ (2016) Diels-Alder cycloaddition of 2-methylfuran and ethylene for renewable toluene. Appl Catal, B 180:487–496. https://doi.org/10.1016/j.apcatb.2015.06.044

    Article  Google Scholar 

  156. Yan K, Chen A (2014) Selective hydrogenation of furfural and levulinic acid to biofuels on the ecofriendly Cu–Fe catalyst. Fuel 115:101–108. https://doi.org/10.1016/j.fuel.2013.06.042

    Article  Google Scholar 

  157. Liu S, Saha B, Vlachos DG (2019) Catalytic production of renewable lubricant base oils from bio-based 2-alkylfurans and enals. Green Chem 21:3606–3614. https://doi.org/10.1039/C9GC01044K

    Article  Google Scholar 

  158. Eldeeb MA, Akih-Kumgeh B (2018) Recent trends in the production, combustion and modeling of furan-based fuels. Energies 11:512. https://doi.org/10.3390/en11030512

    Article  Google Scholar 

  159. Pace V, Hoyos P, Castoldi L, Domínguez de María P, Alcántara AR (2012) 2-Methyltetrahydrofuran (2-MeTHF): a biomass-derived solvent with broad application in organic chemistry. ChemSusChem 5:1369–1379. https://doi.org/10.1002/cssc.201100780

    Article  Google Scholar 

  160. Lejemble P, Gaset A, Kalck P (1984) From biomass to furan through decarbonylation of furfural under mild conditions. Biomass 4:263–274. https://doi.org/10.1016/0144-4565(84)90039-8

    Article  Google Scholar 

  161. Dau DX (2019) Recent progress in the synthesis of furan. Mini-Rev Org Chem 16:422–452. https://doi.org/10.2174/1570193X15666180608084557

    Article  Google Scholar 

  162. Yuan Q, Pang J, Yu W, Zheng M (2020) Vapor-phase furfural decarbonylation over a high-performance catalyst of 1%Pt/SBA-15. Catalysts 10:1304. https://doi.org/10.3390/catal10111304

    Article  Google Scholar 

  163. Jiménez-Gómez CP, Cecilia JA, García-Sancho C, Moreno-Tost R, Maireles-Torres P (2019) Selective production of furan from gas-phase furfural decarbonylation on Ni-MgO catalysts. ACS Sustainable Chem Eng 7:7676–7685. https://doi.org/10.1021/acssuschemeng.8b06155

    Article  Google Scholar 

  164. Ishida T, Kume K, Kinjo K, Honma T, Nakada K, Ohashi H, Yokoyama T, Hamasaki A, Murayama H, Izawa Y, Utsunomiya M, Tokunaga M (2016) Efficient decarbonylation of furfural to furan catalyzed by zirconia-supported palladium clusters with low atomicity. ChemSusChem 9:3441–3447. https://doi.org/10.1002/cssc.201601232

    Article  Google Scholar 

  165. Goossen LJ, Manjolinho F, Khan BA, Rodríguez N (2009) Microwave-assisted Cu-catalyzed protodecarboxylation of aromatic carboxylic acids. J Org Chem 74:2620–2623. https://doi.org/10.1021/jo802628z

    Article  Google Scholar 

  166. Dupuy S, Nolan SP (2013) Gold(I)-catalyzed protodecarboxylation of (hetero)aromatic carboxylic acids. Chemistry–A European Journal 19:14034–14038. https://doi.org/10.1002/chem.201303200

  167. Toy XY, Roslan IIB, Chuah GK, Jaenicke S (2014) Protodecarboxylation of carboxylic acids over heterogeneous silver catalysts. Catal Sci Technol 4:516–523. https://doi.org/10.1039/C3CY00580A

    Article  Google Scholar 

  168. Li X, Jia P, Wang T (2016) Furfural: a promising platform compound for sustainable production of C4 and C5 chemicals. ACS Catal 6:7621–7640. https://doi.org/10.1021/acscatal.6b01838

    Article  Google Scholar 

  169. Drault F, Snoussi Y, Paul S, Itabaiana Junoir I, Wojcieszak R (2020) Recent advances in carboxylation of furoic acid into 2,5-furandicarboxylic acid: pathways towards bio-based polymers. ChemSusChem 13:5164–5172. https://doi.org/10.1002/cssc.202001393

    Article  Google Scholar 

  170. Moore JA, Partain III EM, (1985) Oxidation of furfuraldehydes with sodium chlorite. Org Prep Proced Int 17:203–205. https://doi.org/10.1080/00304948509355502

    Article  Google Scholar 

  171. Douthwaite M, Huang X, Iqbal S, Miedziak PJ, Brett GL, Kondrat SA, Edwards JK, Sankar M, Knight DW, Bethell D, Hutchings GJ (2017) The controlled catalytic oxidation of furfural to furoic acid using AuPd/Mg(OH)2. Catal Sci Technol 7:5284–5293. https://doi.org/10.1039/C7CY01025G

    Article  Google Scholar 

  172. Yu H, Ru S, Dai G, Zhai Y, Lin H, Han S, Wei Y (2017) An efficient iron(III)-catalyzed aerobic oxidation of aldehydes in water for the green preparation of carboxylic acids. Angew Chem, Int Ed 56:3867–3871. https://doi.org/10.1002/anie.201612225

    Article  Google Scholar 

  173. Hajimohammadi M, Safari N, Mofakham H, Shaabani A (2010) A new and efficient aerobic oxidation of aldehydes to carboxylic acids with singlet oxygen in the presence of porphyrin sensitizers and visible light. Tetrahedron Lett 51:4061–4065. https://doi.org/10.1016/j.tetlet.2010.05.124

    Article  Google Scholar 

  174. Khatana AK, Singh V, Gupta MK, Tiwari B (2018) A highly efficient NHC-catalyzed aerobic oxidation of aldehydes to carboxylic acids. Synthesis 50:4290–4294. https://doi.org/10.1055/s-0037-1610069

    Article  Google Scholar 

  175. Zhang Y, Cheng Y, Cai H, He S, Shan Q, Zhao H, Chen Y, Wang B (2017) Catalyst-free aerobic oxidation of aldehydes into acids in water under mild conditions. Green Chem 19:5708–5713. https://doi.org/10.1039/C7GC02983G

    Article  Google Scholar 

  176. Wu X-F, Darcel C (2009) Iron-catalyzed one-pot oxidative esterification of aldehydes. Eur J Org Chem 2009:1144–1147. https://doi.org/10.1002/ejoc.200801176

    Article  Google Scholar 

  177. Gopinath R, Barkakaty B, Talukdar B, Patel BK (2003) Peroxovanadium-catalyzed oxidative esterification of aldehydes. J Org Chem 68:2944–2947. https://doi.org/10.1021/jo0266902

    Article  Google Scholar 

  178. Patil A, Shinde S, Kamble S, Rode CV (2019) Two-step sequence of acetalization and hydrogenation for synthesis of diesel fuel additives from furfural and diols. Energy Fuels 33:7466–7472. https://doi.org/10.1021/acs.energyfuels.9b01640

    Article  Google Scholar 

  179. Pinheiro DLJ, Nielsen M (2021) Base-free synthesis of furfurylamines from biomass furans using Ru pincer complexes. Catalysts 11:558. https://doi.org/10.3390/catal11050558

    Article  Google Scholar 

  180. Chatterjee M, Ishizaka T, Kawanami H (2016) Reductive amination of furfural to furfurylamine using aqueous ammonia solution and molecular hydrogen: an environmentally friendly approach. Green Chem 18:487–496. https://doi.org/10.1039/C5GC01352F

    Article  Google Scholar 

  181. Yuan H, Li J-P, Su F, Yan Z, Kusema BT, Streiff S, Huang Y, Pera-Titus M, Shi F (2019) Reductive amination of furanic aldehydes in aqueous solution over versatile NiyAlOx catalysts. ACS Omega 4:2510–2516. https://doi.org/10.1021/acsomega.8b03516

    Article  Google Scholar 

  182. Wang P, Jing Y, Guo Y, Cui Y, Dai S, Liu X, Wang Y (2020) Highly efficient alloyed NiC/Nb2O5 catalyst for the hydrodeoxygenation of biofuel precursors into liquid alkanes. Catal Sci Technol 10:4256–4263. https://doi.org/10.1039/D0CY00684J

    Article  Google Scholar 

  183. Strohmann M, Bordet A, Vorholt JA, Leitner W (2019) Tailor-made biofuel 2-butyltetrahydrofuran from the continuous flow hydrogenation and deoxygenation of furfuralacetone. Green Chem 21:6299–6306. https://doi.org/10.1039/C9GC02555C

    Article  Google Scholar 

  184. Mahfud A, Ulfa SM, Utomo EP (2016) Hydrogenation/deoxygenation (H/D) reaction of furfural-acetone condensation product using Ni/Al2O3-ZrO2 catalyst. J Pure App Chem Res 5:108–115. https://doi.org/10.21776/ub.jpacr.2016.005.02.263

  185. Kumar A, Srivastava R (2020) Bi-functional magnesium silicate catalyzed glucose and furfural transformations to renewable chemicals. ChemCatChem 12:4807–4816. https://doi.org/10.1002/cctc.202000711

    Article  Google Scholar 

  186. Taimoory SM, Sadraei SI, Fayoumi RA, Nasri S, Revington M, Trant JF (2018) Preparation and characterization of a small library of thermally-labile end-caps for variable-temperature triggering of self-immolative polymers. J Org Chem 83:4427–4440. https://doi.org/10.1021/acs.joc.8b00135

    Article  Google Scholar 

  187. Antonioletti R, D’Auria M, de Mico A, Piancatelli G, Scettri A (1985) Photochemical synthesis of 3- and 5-aryl-2-furyl derivatives. J Chem Soc, Perkin Trans 1:1285–1288. https://doi.org/10.1039/P19850001285

    Article  Google Scholar 

  188. Nishimura S, Shibata A (2019) Hydroxymethylation of furfural to HMF with aqueous formaldehyde over zeolite beta catalyst. Catalysts 9:314. https://doi.org/10.3390/catal9040314

    Article  Google Scholar 

  189. Wang C, Wang A, Yu Z, Wang Y, Sun Z, Kogan VM, Liu Y-Y (2021) Aqueous phase hydrogenation of furfural to tetrahydrofurfuryl alcohol over Pd/UiO-66. Catal Commun 148:106178. https://doi.org/10.1016/j.catcom.2020.106178

    Article  Google Scholar 

  190. Gavilà L, Lähde A, Jokiniemi J, Constanti M, Medina F, del Río E, Tichit D, Álvarez MG (2019) Insights on the one-pot formation of 1,5-pentanediol from furfural with Co−Al spinel-based nanoparticles as an alternative to noble metal catalysts. ChemCatChem 11:4944–4953. https://doi.org/10.1002/cctc.201901078

    Article  Google Scholar 

  191. Montagnon T, Kalaitzakis D, Triantafyllakis M, Stratakis M, Vassilikogiannakis G (2014) Furans and singlet oxygen–why there is more to come from this powerful partnership. Chem Commun 50:15480–15498. https://doi.org/10.1039/C4CC02083A

    Article  Google Scholar 

  192. Trost BM, Toste FD (2003) Palladium catalyzed kinetic and dynamic kinetic asymmetric transformations of γ-acyloxybutenolides. Enantioselective total synthesis of (+)-aflatoxin B1 and B2a. J Am Chem Soc 125:3090–3100. https://doi.org/10.1021/ja020988s

    Article  Google Scholar 

  193. Marinković S, Brulé C, Hoffmann N, Prost E, Nuzillard J-M, Bulach V (2004) Origin of chiral induction in radical reactions with the diastereoisomers (5R)- and (5S)-5-l-menthyloxyfuran-2[5H]-one. J Org Chem 69:1646–1651. https://doi.org/10.1021/jo030292x

    Article  Google Scholar 

  194. Stockton KP, May JP, Taylor DK, Greatrex BW (2014) Practical evaluation of compact fluorescent lamps for dye-sensitized photooxidation reactions. Synlett 25:1168–1172. https://doi.org/10.1055/s-0033-1340976

    Article  Google Scholar 

  195. Moradei OM, Paquette LA (2003) (5S)-(d-Menthyloxy)-2(5H)-Furanone. Org Synth 80:66. https://doi.org/10.15227/orgsyn.080.0066

  196. Chen B, Li F, Yuan G (2017) Selective hydrodeoxygenation of 5-hydroxy-2(5H)-furanone to γ-butyrolactone over Pt/mesoporous solid acid bifunctional catalyst. RSC Adv 7:21145–21152. https://doi.org/10.1039/C7RA03205F

    Article  Google Scholar 

  197. de Jong JC, van Bolhuis F, Feringa BL (1991) Asymmetric Diels-Alder reactions with 5-menthyloxy-2-(5H)-furanone. Tetrahedron: Asymmetry 2:1247–1262. https://doi.org/10.1016/S0957-4166(00)80024-5

  198. Krow GR (2004) The Baeyer–Villiger oxidation of ketones and aldehydes. In: Organic Reactions. Wiley-VCH, pp 251–798. https://doi.org/10.1002/0471264180.or043.03

  199. Li X, Lan X, Wang T (2016) Highly selective catalytic conversion of furfural to γ-butyrolactone. Green Chem 18:638–642. https://doi.org/10.1039/C5GC02411K

    Article  Google Scholar 

  200. Li X, Lan X, Wang T (2016) Selective oxidation of furfural in a bi-phasic system with homogeneous acid catalyst. Catal Today 276:97–104. https://doi.org/10.1016/j.cattod.2015.11.036

    Article  Google Scholar 

  201. Näsman J-AH, Pensar KG (1985) An improved one-pot preparation of 2-furanones. Synthesis 1985:786–788. https://doi.org/10.1055/s-1985-31349

    Article  Google Scholar 

  202. Zvarych V, Nakonechna A, Marchenko M, Khudyi O, Lubenets V, Khuda L, Kushniryk O, Novikov V (2019) Hydrogen peroxide oxygenation of furan-2-carbaldehyde via an easy, green method. J Agric Food Chem 67:3114–3117. https://doi.org/10.1021/acs.jafc.8b06284

    Article  Google Scholar 

  203. Bhat NS, Kumar R, Jana A, Mal SS, Dutta S (2021) Selective oxidation of biomass-derived furfural to 2(5H)-furanone using trifluoroacetic acid as the catalyst and hydrogen peroxide as a green oxidant. Biomass Convers Biorefin https://doi.org/10.1007/s13399-021-01297-0

    Article  Google Scholar 

  204. Li X, Li Y, Wang T (2019) Effect of oxide supports on Pt-Ni bimetallic catalysts for the selective hydrogenation of biomass-derived 2(5H)-furanone. Catal Today 319:93–99. https://doi.org/10.1016/j.cattod.2018.03.053

    Article  Google Scholar 

  205. Gassama A, Ernenwein C, Hoffmann N (2010) Synthesis of surfactants from furfural derived 2[5H]-furanone and fatty amines. Green Chem 12:859–865. https://doi.org/10.1039/B924187F

    Article  Google Scholar 

  206. Silva Ferreira AC, Barbe J-C, Bertrand A (2003) 3-Hydroxy-4,5-dimethyl-2(5H)-furanone: a key odorant of the typical aroma of oxidative aged port wine. J Agric Food Chem 51:4356–4363. https://doi.org/10.1021/jf0342932

    Article  Google Scholar 

  207. Hjelmgaard T, Persson T, Rasmussen TB, Givskov M, Nielsen J (2003) Synthesis of furanone-based natural product analogues with quorum sensing antagonist activity. Bioorg Med Chem 11:3261–3271. https://doi.org/10.1016/S0968-0896(03)00295-5

    Article  Google Scholar 

  208. Alonso-Fagúndez N, Granados ML, Mariscal R, Ojeda M (2012) Selective conversion of furfural to maleic anhydride and furan with VOx/Al2O3 catalysts. ChemSusChem 5:1984–1990. https://doi.org/10.1002/cssc.201200167

    Article  Google Scholar 

  209. Hronec M, Fulajtarová K (2012) Selective transformation of furfural to cyclopentanone. Catal Commun 24:100–104. https://doi.org/10.1016/j.catcom.2012.03.020

    Article  Google Scholar 

  210. Panten J, Surburg H (2015) Flavors and fragrances, 2. aliphatic compounds. In: Ullmann’s Encyclopedia of Industrial Chemistry. Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, pp 1–55. https://doi.org/10.1002/14356007.t11_t01

  211. Shen T, Hu R, Zhu C, Li M, Zhuang W, Tang C, Ying H (2018) Production of cyclopentanone from furfural over Ru/C with Al11.6PO23.7 and application in the synthesis of diesel range alkanes. RSC Adv 8:37993–38001. https://doi.org/10.1039/C8RA08757A

    Article  Google Scholar 

  212. Zhang Y, Fan G, Yang L, Li F (2018) Efficient conversion of furfural into cyclopentanone over high performing and stable Cu/ZrO2 catalysts. Appl Catal, A 561:117–126. https://doi.org/10.1016/j.apcata.2018.05.030

    Article  Google Scholar 

  213. Hronec M, Fulajtárová K, Vávra I, Soták T, Dobročka E, Mičušík M (2016) Carbon supported Pd–Cu catalysts for highly selective rearrangement of furfural to cyclopentanone. Appl Catal, B 181:210–219. https://doi.org/10.1016/j.apcatb.2015.07.046

    Article  Google Scholar 

  214. Li X-L, Deng J, Shi J, Pan T, Yu C-G, Xu H-J, Fu Y (2015) Selective conversion of furfural to cyclopentanone or cyclopentanol using different preparation methods of Cu–Co catalysts. Green Chem 17:1038–1046. https://doi.org/10.1039/C4GC01601G

    Article  Google Scholar 

  215. Hronec M, Fulajtárova K, Soták T (2014) Highly selective rearrangement of furfuryl alcohol to cyclopentanone. Appl Catal, B 154–155:294–300. https://doi.org/10.1016/j.apcatb.2014.02.029

    Article  Google Scholar 

  216. Fang C, Liu Y, Wu W, Li H, Wang Z, Zhao W, Yang T, Yang S (2019) One pot cascade conversion of bio-based furfural to levulinic acid with Cu-doped niobium phosphate catalysts. Waste Biomass Valor 10:1141–1150. https://doi.org/10.1007/s12649-017-0131-7

    Article  Google Scholar 

  217. Kim H, Lee S, Ahn Y, Lee J, Won W (2020) Sustainable production of bioplastics from lignocellulosic biomass: technoeconomic analysis and life-cycle assessment. ACS Sustainable Chem Eng 8:12419–12429. https://doi.org/10.1021/acssuschemeng.0c02872

    Article  Google Scholar 

  218. Li L, Barnett KJ, McClelland DJ, Zhao D, Liu G, Huber GW (2019) Gas-phase dehydration of tetrahydrofurfuryl alcohol to dihydropyran over γ-Al2O3. Appl Catal, B 245:62–70. https://doi.org/10.1016/j.apcatb.2018.12.039

    Article  Google Scholar 

  219. Chang X, Liu A-F, Cai B, Luo J-Y, Pan H, Huang Y-B (2016) Catalytic transfer hydrogenation of furfural to 2-methylfuran and 2-methyltetrahydrofuran over bimetallic copper–palladium catalysts. ChemSusChem 9:3330–3337. https://doi.org/10.1002/cssc.201601122

    Article  Google Scholar 

  220. Liu B, Zhang Z (2016) One-pot conversion of carbohydrates into furan derivatives via furfural and 5-hydroxylmethylfurfural as intermediates. ChemSusChem 9:2015–2036. https://doi.org/10.1002/cssc.201600507

    Article  Google Scholar 

  221. Démolis A, Essayem N, Rataboul F (2014) Synthesis and applications of alkyl levulinates. ACS Sustainable Chem Eng 2:1338–1352. https://doi.org/10.1021/sc500082n

    Article  Google Scholar 

  222. Hu X, Song Y, Wu L, Gholizadeh M, Li C-Z (2013) One-pot synthesis of levulinic acid/ester from C5 carbohydrates in a methanol medium. ACS Sustainable Chem Eng 1:1593–1599. https://doi.org/10.1021/sc400229w

    Article  Google Scholar 

  223. Wang M, Peng L, Gao X, He L, Zhang J (2020) Efficient one-pot synthesis of alkyl levulinate from xylose with an integrated dehydration/transfer-hydrogenation/alcoholysis process. Sustainable Energy Fuels 4:1383–1395. https://doi.org/10.1039/C9SE00982E

    Article  Google Scholar 

  224. Morales G, Osatiashtiani A, Hernández B, Iglesias J, Melero JA, Paniagua M, Brown DR, Granollers M, Lee AF, Wilson K (2014) Conformal sulfated zirconia monolayer catalysts for the one-pot synthesis of ethyl levulinate from glucose. Chem Commun 50:11742–11745. https://doi.org/10.1039/C4CC04594G

    Article  Google Scholar 

  225. Pinheiro PF, Chaves DM, da Silva MJ (2019) One-pot synthesis of alkyl levulinates from biomass derivative carbohydrates in tin(II) exchanged silicotungstates-catalyzed reactions. Cellulose 26:7953–7969. https://doi.org/10.1007/s10570-019-02665-w

    Article  Google Scholar 

  226. Upare PP, Hwang YK, Hwang DW (2018) An integrated process for the production of 2,5-dihydroxymethylfuran and its polymer from fructose. Green Chem 20:879–885. https://doi.org/10.1039/C7GC03597G

    Article  Google Scholar 

  227. Zhao W, Wu W, Li H, Fang C, Yang T, Wang Z, He C, Yang S (2018) Quantitative synthesis of 2,5-bis(hydroxymethyl)furan from biomass-derived 5-hydroxymethylfurfural and sugars over reusable solid catalysts at low temperatures. Fuel 217:365–369. https://doi.org/10.1016/j.fuel.2017.12.069

    Article  Google Scholar 

  228. Yang W, Sen A (2011) Direct catalytic synthesis of 5-methylfurfural from biomass-derived carbohydrates. ChemSusChem 4:349–352. https://doi.org/10.1002/cssc.201000369

    Article  Google Scholar 

  229. Peng Y, Li X, Gao T, Li T, Yang W (2019) Preparation of 5-methylfurfural from starch in one step by iodide mediated metal-free hydrogenolysis. Green Chem 21:4169–4177. https://doi.org/10.1039/C9GC01645G

    Article  Google Scholar 

  230. Feng Y, Li Z, Long S, Sun Y, Tang X, Zeng X, Lin L (2020) Direct conversion of biomass derived l-rhamnose to 5-methylfurfural in water in high yield. Green Chem 22:5984–5988. https://doi.org/10.1039/D0GC02105A

    Article  Google Scholar 

  231. Insyani R, Verma D, Kim SM, Kim J (2017) Direct one-pot conversion of monosaccharides into high-yield 2,5-dimethylfuran over a multifunctional Pd/Zr-based metal–organic framework@sulfonated graphene oxide catalyst. Green Chem 19:2482–2490. https://doi.org/10.1039/C7GC00269F

    Article  Google Scholar 

  232. Xiang X, Cui J, Ding G, Zheng H, Zhu Y, Li Y (2016) One-step continuous conversion of fructose to 2,5-dihydroxymethylfuran and 2,5-dimethylfuran. ACS Sustainable Chem Eng 4:4506–4510. https://doi.org/10.1021/acssuschemeng.6b01411

    Article  Google Scholar 

  233. Nguyen XP, Hoang AT, Ölçer AI, Engel D, Pham VV, Nayak SK (2021) Biomass-derived 2,5-dimethylfuran as a promising alternative fuel: an application review on the compression and spark ignition engine. Fuel Process Technol 214:106687. https://doi.org/10.1016/j.fuproc.2020.106687

    Article  Google Scholar 

  234. Zhou C, Zhao J, Sun H, Song Y, Wan X, Lin H, Yang Y (2019) One-step approach to 2,5-diformylfuran from fructose over molybdenum oxides supported on carbon spheres. ACS Sustainable Chem Eng 7:315–323. https://doi.org/10.1021/acssuschemeng.8b03470

    Article  Google Scholar 

  235. Yang Z, Qi W, Su R, He Z (2017) Selective synthesis of 2,5-diformylfuran and 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural and fructose catalyzed by magnetically separable catalysts. Energy Fuels 31:533–541. https://doi.org/10.1021/acs.energyfuels.6b02012

    Article  Google Scholar 

  236. Yan D, Wang G, Gao K, Lu X, Xin J, Zhang S (2018) One-pot synthesis of 2,5-furandicarboxylic acid from fructose in ionic liquids. Ind Eng Chem Res 57:1851–1858. https://doi.org/10.1021/acs.iecr.7b04947

    Article  Google Scholar 

  237. Yangyang J, Zhou F, Ma H, Li X, Yuan X, Liang F, Zhang J (2020) One step synthesis of 2,5-furandicarboxylic acid from fructose catalyzed by Ce modified Ru/HAP. J Fuel Chem Technol 48:942–948. https://doi.org/10.1016/S1872-5813(20)30066-9

    Article  Google Scholar 

  238. Cui J, Tan J, Cui X, Zhu Y, Deng T, Ding G, Li Y (2016) Conversion of xylose to furfuryl alcohol and 2-methylfuran in a continuous fixed-bed reactor. ChemSusChem 9:1259–1262. https://doi.org/10.1002/cssc.201600116

    Article  Google Scholar 

  239. Gómez Millán G, Sixta H (2020) Towards the green synthesis of furfuryl alcohol in a one-pot system from xylose: a review. Catalysts 10:1101. https://doi.org/10.3390/catal10101101

    Article  Google Scholar 

  240. Cueto J, Faba L, Díaz E, Ordóñez S (2017) Performance of basic mixed oxides for aqueous-phase 5-hydroxymethylfurfural-acetone aldol condensation. Appl Catal, B 201:221–231. https://doi.org/10.1016/j.apcatb.2016.08.013

    Article  Google Scholar 

  241. Arias KS, Climent MJ, Corma A, Iborra S (2016) Chemicals from biomass: synthesis of biologically active furanochalcones by claisen–schmidt condensation of biomass-derived 5-hydroxymethylfurfural (HMF) with acetophenones. Top Catal 59:1257–1265. https://doi.org/10.1007/s11244-016-0646-3

    Article  Google Scholar 

  242. Lin L, Shi Q, Nyarko AK, Bastow KF, Wu C-C, Su C-Y, Shih CC-Y, Lee K-H (2006) Antitumor agents. 250. design and synthesis of new curcumin analogues as potential anti-prostate cancer agents. J Med Chem 49:3963–3972. https://doi.org/10.1021/jm051043z

    Article  Google Scholar 

  243. Lockman JW, Reeder MD, Suzuki K, Ostanin K, Hoff R, Bhoite L, Austin H, Baichwal V, Willardsen AJ (2010) Inhibition of eEF2-K by thieno[2,3-b]pyridine analogues. Bioorg Med Chem Lett 20:2283–2286. https://doi.org/10.1016/j.bmcl.2010.02.005

    Article  Google Scholar 

  244. Zang H, Chen EYX (2015) Organocatalytic upgrading of furfural and 5-hydroxymethyl furfural to C10 and C12 furoins with quantitative yield and atom-efficiency. Int J Mol Sci 16:7143–7158. https://doi.org/10.3390/ijms16047143

    Article  Google Scholar 

  245. Saikachi H, Ogawa H, Minami Y, Sato K (1970) Synthesis of furan derivatives. L. The Wittig reaction of 2, 5-furandialdehyde with Furan-2, 5-bis (2-cis-4-trans-2, 4-dimethyl-2, 4-pentadienylidene triphenylphos-phorane). Chem Pharm Bull 18:465–473. https://doi.org/10.1248/cpb.18.465

    Article  Google Scholar 

  246. McDermott PJ, Stockman RA (2005) Combining two-directional synthesis and tandem reactions: synthesis of trioxadispiroketals. Org Lett 7:27–29. https://doi.org/10.1021/ol0479702

    Article  Google Scholar 

  247. Mouloungui Z, Delmas M, Gaset A (1984) Synthesis of α,β-unsaturated esters using a solid-liquid phase transfer in a slightly hydrated aprotic medium. Synth Commun 14:701–706. https://doi.org/10.1080/00397918408059583

    Article  Google Scholar 

  248. Li J, Stephanopoulos MF, Xia Y (2020) Introduction: Heterogeneous single-atom catalysis. Chem Rev 120:11699–11702. https://doi.org/10.1021/acs.chemrev.0c01097

    Article  Google Scholar 

  249. Suchorski Y, Rupprechter G (2018) Heterogeneous surfaces as structure and particle size libraries of model catalysts. Catal Lett 148:2947–2956. https://doi.org/10.1007/s10562-018-2506-1

    Article  Google Scholar 

  250. Zhang L, Ren Y, Liu W, Wang A, Zhang T (2018) Single-atom catalyst: a rising star for green synthesis of fine chemicals. Natl Sci Rev 5:653–672. https://doi.org/10.1093/nsr/nwy077

    Article  Google Scholar 

  251. Sudarsanam P, Peeters E, Makshina EV, Parvulescu VI, Sels BF (2019) Advances in porous and nanoscale catalysts for viable biomass conversion. Chem Soc Rev 48:2366–2421. https://doi.org/10.1039/C8CS00452H

    Article  Google Scholar 

  252. Lu Y, Zhang Z, Wang H, Wang Y (2021) Toward efficient single-atom catalysts for renewable fuels and chemicals production from biomass and CO2. Appl Catal, B 292:120162. https://doi.org/10.1016/j.apcatb.2021.120162

    Article  Google Scholar 

  253. Mondelli C, Gözaydın G, Yan N, Pérez-Ramírez J (2020) Biomass valorisation over metal-based solid catalysts from nanoparticles to single atoms. Chem Soc Rev 49:3764–3782. https://doi.org/10.1039/D0CS00130A

    Article  Google Scholar 

  254. Vono LLR, Damasceno CC, Matos JR, Jardim RF, Landers R, Masunaga SH, Rossi LM (2018) Separation technology meets green chemistry: development of magnetically recoverable catalyst supports containing silica, ceria, and titania. Pure Appl Chem 90:133–141. https://doi.org/10.1515/pac-2017-0504

    Article  Google Scholar 

  255. Rajkumari K, Changmai B, Meher AK, Vanlalveni C, Sudarsanam P, Wheatley AEH, Rokhum SL (2021) A reusable magnetic nanocatalyst for bio-fuel additives: the ultrasound-assisted synthesis of solketal. Sustainable Energy Fuels 5:2362–2372. https://doi.org/10.1039/D0SE01900C

Download references

Acknowledgements

SD thanks NITK, Surathkal, for the research facilities.

Funding

The work was partially funded by the Council of Scientific & Industrial Research (CSIR), India, under the grant number (02)0301/17/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saikat Dutta.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, S. Valorization of biomass-derived furfurals: reactivity patterns, synthetic strategies, and applications. Biomass Conv. Bioref. 13, 10361–10386 (2023). https://doi.org/10.1007/s13399-021-01924-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01924-w

Keywords

Navigation