Skip to main content

Advertisement

Log in

A review on catalytic conversion of lignin into high-value chemicals over Ni-based catalysts

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The exploration on effective pathways for catalytic conversion of lignin (which is the most abundant and renewable natural bio-aromatic resource) into high-value chemicals (e.g., aromatic hydrocarbons and phenols) has attracted wide interests both in industrial and in scientific fields. By unleashing the potential of lignin to replace the utilization of fossil-derived resource for producing high-value chemicals, it can extremely improve lignin valorization and relieve the energy shortage caused by excessive consumption of traditional fossil-derived resource. However, achieving efficient lignin conversion has still been a challenge due to its structural complexity and stability. Ni-based catalysts consisting of active metal Ni and various functional supports have been broadly researched due to their inherent superiority in cost and outstanding performance in catalytic activity. Therefore, this review is dedicated to summarizing the recent progress of catalytic conversion of lignin (or lignin-derived model compounds) over Ni-based catalysts, including monometallic and bimetallic supported catalysts.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558. https://doi.org/10.1039/c1cs15147a

    Article  Google Scholar 

  2. Antonio Melero J, Iglesias J, Garcia A (2012) Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges. Energ Environ Sci 5:7393–7420. https://doi.org/10.1039/c2ee21231e

    Article  Google Scholar 

  3. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. https://doi.org/10.1021/cr068360d

    Article  Google Scholar 

  4. Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624. https://doi.org/10.1021/acs.chemrev.5b00155

    Article  Google Scholar 

  5. Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559-U182. https://doi.org/10.1038/nature08721

    Article  Google Scholar 

  6. Peng B, Yao Y, Zhao C, Lercher JA (2012) Towards quantitative conversion of microalgae oil to diesel-range alkanes with bifunctional catalysts. Angew Chem Int Edit 51:2072–2075. https://doi.org/10.1002/anie.201106243

    Article  Google Scholar 

  7. Chen SS, Maneerung T, Tsang DCW, Ok YS, Wang CH (2017) Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts. Chem Eng J 328:246–273. https://doi.org/10.1016/j.cej.2017.07.020

    Article  Google Scholar 

  8. Petridis L, Smith JC (2018) Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy. Nat Rev Chem 2:382–389. https://doi.org/10.1038/s41570-018-0050-6

    Article  Google Scholar 

  9. Yu IKM, Tsang DCW (2017) Conversion of biomass to hydroxymethylfurfural: a review of catalytic systems and underlying mechanisms. Bioresour Technol 238:716–732. https://doi.org/10.1016/j.biortech.2017.04.026

    Article  Google Scholar 

  10. Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Edit 55:8164–8215. https://doi.org/10.1002/anie.201510351

    Article  Google Scholar 

  11. Carpenter D, Westover TL, Czernik S, Jablonski W (2014) Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem 16:384–406. https://doi.org/10.1039/c3gc41631c

    Article  Google Scholar 

  12. Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int Edit 51:2564–2601. https://doi.org/10.1002/anie.201105125

    Article  Google Scholar 

  13. Akhtari S, Sowlati T, Day K (2014) Economic feasibility of utilizing forest biomass in district energy systems-a review. Renew Sust Energ Rev 33:117–127. https://doi.org/10.1016/j.rser.2014.01.058

    Article  Google Scholar 

  14. Yoo CG, Dumitrache A, Muchero W, Natzke J, Akinosho H, Li M (2018) Significance of lignin S/G ratio in biomass recalcitrance of Populus trichocarpa variants for bioethanol production. ACS Sustain Chem Eng 6:2162–2168. https://doi.org/10.1021/acssuschemeng.7b03586

    Article  Google Scholar 

  15. Wei Y, Wang H, Zhang X, Liu C (2021) Ammonia-assisted hydrothermal carbon material with schiff base structures synthesized from factory waste hemicelluloses for Cr(VI) adsorption. J Environ Chem Eng 9:106187. https://doi.org/10.1016/j.jece.2021.106187

    Article  Google Scholar 

  16. Cao L, Zhang C, Chen H, Tsang DCW, Luo G, Zhang S (2017) Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. Bioresour Technol 245:1184–1193. https://doi.org/10.1016/j.biortech.2017.08.196

    Article  Google Scholar 

  17. Doherty WOS, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crop Prod 33:259–276. https://doi.org/10.1016/j.indcrop.2010.10.022

    Article  Google Scholar 

  18. Rahimi A, Ulbrich A, Coon JJ, Stahl SS (2014) Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515:249–252. https://doi.org/10.1038/nature13867

    Article  Google Scholar 

  19. Ha J-M, Hwang K-R, Kim Y-M, Jae J, Kim K-H, Lee H-W (2019) Recent progress in the thermal and catalytic conversion of lignin. Renew Sust Energ Rev 111:422–441. https://doi.org/10.1016/j.rser.2019.05.034

    Article  Google Scholar 

  20. Zirbes M, Waldvogel SR (2018) Electro-conversion as sustainable method for the fine chemical production from the biopolymer lignin. Curr Opin Green Sust 14:19–25. https://doi.org/10.1016/j.cogsc.2018.05.001

    Article  Google Scholar 

  21. Kang S, Li X, Fan J, Chang J (2013) Hydrothermal conversion of lignin: a review. Renew Sust Energ Rev 27:546–558. https://doi.org/10.1016/j.rser.2013.07.013

    Article  Google Scholar 

  22. Wang Y, Dai L, Fan L, Shan S, Liu Y, Ruan R (2016) Review of microwave-assisted lignin conversion for renewable fuels and chemicals. J Anal Appl Pyrol 119:104–113. https://doi.org/10.1016/j.jaap.2016.03.011

    Article  Google Scholar 

  23. Liu Y, Li C, Miao W, Tang W, Xue D, Li C et al (2019) Mild redox-neutral depolymerization of lignin with a binuclear Rh complex in water. ACS Catal 9:4441–4447. https://doi.org/10.1021/acscatal.9b01843

    Article  Google Scholar 

  24. Liu Y, Li C, Miao W, Tang W, Xue D, Xiao J et al (2020) Rhodium-terpyridine catalyzed redox-neutral depolymerization of lignin in water. Green Chem 22:33–38. https://doi.org/10.1039/c9gc03057c

    Article  Google Scholar 

  25. Zhang B, Qi Z, Li X, Ji J, Zhang L, Wang H et al (2019) Cleavage of lignin C-O bonds over a heterogeneous rhenium catalyst through hydrogen transfer reactions. Green Chem 21:5556–5564. https://doi.org/10.1039/c9gc01710k

    Article  Google Scholar 

  26. Duan B, Wang Q, Zhao Y, Li N, Zhang S, Du Y (2019) Effect of catalysts on liquefaction of alkali lignin for production of aromatic phenolic monomer. Biomass Bioenerg 131. https://doi.org/10.1016/j.biombioe.2019.105413.

  27. Huang S, Mahmood N, Zhang Y, Tymchyshyn M, Yuan Z, Xu C (2017) Reductive de-polymerization of Kraft lignin with formic acid at low temperatures using inexpensive supported Ni-based catalysts. Fuel 209:579–586. https://doi.org/10.1016/j.fuel.2017.08.031

    Article  Google Scholar 

  28. Hong YK, Lee DW, Eom HJ, Lee KY (2014) The catalytic activity of Sulfided Ni/W/TiO2 (anatase) for the hydrodeoxygenation of guaiacol. J Mol Catal A-Chem 392:241–246. https://doi.org/10.1016/j.molcata.2014.05.025

    Article  Google Scholar 

  29. Mora-Vergara ID, Hernandez Moscoso L, Gaigneaux EM, Giraldo SA, Baldovino-Medrano VG (2018) Hydrodeoxygenation of guaiacol using NiMo and CoMo catalysts supported on alumina modified with potassium. Catal Today 302:125–135. https://doi.org/10.1016/j.cattod.2017.07.015

    Article  Google Scholar 

  30. Dorrestijn E, Laarhoven LJJ, Arends IWCE, Mulder P (2000) The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. J Anal Appl Pyrol 54:153–192. https://doi.org/10.1016/S0165-2370(99)00082-0

    Article  Google Scholar 

  31. Jones L, Ennos AR, Turner SR (2001) Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J 26:205–216. https://doi.org/10.1046/j.1365-313x.2001.01021.x

    Article  Google Scholar 

  32. Chabannes M, Ruel K, Yoshinaga A, Chabbert B, Jauneau A, Joseleau JP (2001) In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J 28:271–282. https://doi.org/10.1046/j.1365-313X.2001.01159.x

    Article  Google Scholar 

  33. Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K (2018) Bright side of lignin depolymerization: toward new platform chemicals. Chem Rev 118:614–678. https://doi.org/10.1021/acs.chemrev.7b00588

    Article  Google Scholar 

  34. Matsagar BM, Hossain SA, Islam T, Alamri HR, Alothman ZA, Yamauchi Y (2017) Direct production of furfural in one-pot fashion from raw biomass using Bronsted acidic ionic liquids. Sci Rep-UK 7:13508. https://doi.org/10.1038/s41598-017-13946-4

    Article  Google Scholar 

  35. Upton BM, Kasko AM (2016) Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev 116:2275–2306. https://doi.org/10.1021/acs.chemrev.5b00345

    Article  Google Scholar 

  36. Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001–1013. https://doi.org/10.1105/tpc.7.7.1001

    Article  Google Scholar 

  37. Wang GH, Chen HZ (2016) Enhanced lignin extraction process from steam exploded corn stalk. Sep Purif Technol 157:93–101. https://doi.org/10.1016/j.seppur.2015.11.036

    Article  Google Scholar 

  38. Rencoret J, Marques G, Gutierrez A, Nieto L, Jimenez-Barbero J, Martinez AT (2009) Isolation and structural characterization of the milled-wood lignin from Paulownia fortunei wood. Ind Crop Prod 30:137–143. https://doi.org/10.1016/j.indcrop.2009.03.004

    Article  Google Scholar 

  39. Bu L, Tang Y, Gao Y, Jian H, Jiang J (2011) Comparative characterization of milled wood lignin from furfural residues and corncob. Chem Eng J 175:176–184. https://doi.org/10.1016/j.cej.2011.09.091

    Article  Google Scholar 

  40. Tejado A, Pena C, Labidi J, Echeverria JM, Mondragon I (2007) Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bioresour Technol 98:1655–1663. https://doi.org/10.1016/j.biortech.2006.05.042

    Article  Google Scholar 

  41. Jankovic B (2011) The comparative kinetic analysis of Acetocell and Lignoboost (R) lignin pyrolysis: the estimation of the distributed reactivity models. Bioresour Technol 44:53–58. https://doi.org/10.1016/j.biortech.2011.07.080

    Article  Google Scholar 

  42. Kwon HS, Moon JH, Lee UD, Yoon JJ, van Walsum GP, Um BH (2016) Fractionation and gasification of black liquor derived from Kraft pulping. J Ind Eng Chem 34:122–129. https://doi.org/10.1016/j.jiec.2015.10.044

    Article  Google Scholar 

  43. Humpert D, Ebrahimi M, Czermak P (2016) Membrane technology for the recovery of lignin: a review. Membranes-basel 6:42. https://doi.org/10.3390/membranes6030042

    Article  Google Scholar 

  44. Chakar FS, Ragauskas AJ (2004) Review of current and future softwood Kraft lignin process chemistry. Ind Crop Prod 20:131–141. https://doi.org/10.1016/j.indcrop.2004.04.016

    Article  Google Scholar 

  45. Gellerstedt G, Majtnerova A, Zhang L (2004) Towards a new concept of lignin condensation in Kraft pulping. Initial results CR Biol 327:817–826. https://doi.org/10.1016/j.crvi.2004.03.011

    Article  Google Scholar 

  46. Kim GH, Um BH (2020) Fractionation and characterization of lignins from Miscanthus via organosolv and soda pulping for biorefinery applications. Int J Bio Macromol 158:443–451. https://doi.org/10.1016/j.ijbiomac.2020.04.229

    Article  Google Scholar 

  47. Figueiredo P, Lintinen K, Hirvonen JT, Kostiainen MA, Santos HA (2018) Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications. Prog Mater Sci 93:233–269. https://doi.org/10.1016/j.pmatsci.2017.12.001

    Article  Google Scholar 

  48. Laurichesse S, Averous L (2013) Synthesis, thermal properties, rheological and mechanical behaviors of lignins-grafted-poly(epsilon-caprolactone). Polymer 54:3882–3890. https://doi.org/10.1016/j.polymer.2013.05.054

    Article  Google Scholar 

  49. Francis RC, Shin SJ, Omori S, Amidon TE, Blain TJ (2006) Soda pulping of hardwoods catalyzed by anthraquinone and methyl substituted anthraquinones. J Wood Chem Technol 26:141–152. https://doi.org/10.1080/02773810600701737

    Article  Google Scholar 

  50. Wi SG, Cho EJ, Lee DS, Lee SJ, Lee YJ, Bae HJ (2015) Lignocellulose conversion for biofuel: a new pretreatment greatly improves downstream biocatalytic hydrolysis of various lignocellulosic materials. Biotechnol Biofuels 8:228. https://doi.org/10.1186/s13068-015-0419-4

    Article  Google Scholar 

  51. Jesus de la Torre M, Moral A, Dolores Hernandez M, Cabeza E, Tijero A (2013) Organosolv lignin for biofuel. Ind Crop Prod 45:58–63. https://doi.org/10.1016/j.indcrop.2012.12.002

    Article  Google Scholar 

  52. Matsushita Y, Imai M, Iwatsuki A, Fukushima K (2008) The relationship between surface tension and the industrial performance of water-soluble polymers prepared from acid. hydrolysis lignin, a saccharification by-product from woody materials. Bioresour Technol 99:3024–3028. https://doi.org/10.1016/j.biortech.2007.06.015

    Article  Google Scholar 

  53. Lu QF, Huang ZK, Liu B, Cheng X (2012) Preparation and heavy metal ions biosorption of graft copolymers from enzymatic hydrolysis lignin and amino acids. Bioresour Technol 104:111–118. https://doi.org/10.1016/j.biortech.2011.10.055

    Article  Google Scholar 

  54. Jin Y, Ruan X, Cheng X, Lue Q (2011) Liquefaction of lignin by polyethyleneglycol and glycerol. Bioresour Technol 102:3581–3583. https://doi.org/10.1016/j.biortech.2010.10.050

    Article  Google Scholar 

  55. Xie Y, Lu QF, Jin YQ, Cheng XS (2011) Enzymatic hydrolysis lignin epoxy resin modified asphalt. Adv Mater Res 239-242:3346-3349. https://doi.org/10.4028/www.scientific.net/AMR.239-242.3346

  56. Mai C, Milstein O, Huttermann A (2000) Chemoenzymatical grafting of acrylamide onto lignin. J Biotechnol 79:173–183. https://doi.org/10.1016/S0168-1656(00)00230-3

    Article  Google Scholar 

  57. Ibrahim MNM, Ahmed-Haras MR, Sipaut CS, Aboul-Enein HY, Mohamed AA (2010) Preparation and characterization of a newly water soluble lignin graft copolymer from oil palm lignocellulosic waste. Carbohyd Polym 80:1102–1110. https://doi.org/10.1016/j.carbpol.2010.01.030

    Article  Google Scholar 

  58. Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376. https://doi.org/10.1002/bit.22179

    Article  Google Scholar 

  59. Sun SN, Li MF, Yuan TQ, Xu F, Sun RC (2013) Effect of ionic liquid/organic solvent pretreatment on the enzymatic hydrolysis of corncob for bioethanol production. Part 1: Structural characterization of the lignins. Ind Crop Prod 43:570–577. https://doi.org/10.1016/j.indcrop.2012.07.074

    Article  Google Scholar 

  60. Kim JY, Shin EJ, Eom IY, Won K, Kim YH, Choi D (2011) Structural features of lignin macromolecules extracted with ionic liquid from poplar wood. Bioresour Technol 102:9020–9025. https://doi.org/10.1016/j.biortech.2011.07.081

    Article  Google Scholar 

  61. Li J, Gellerstedt G, Toven K (2009) Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals. Bioresour Technol 100:2556–2561. https://doi.org/10.1016/j.biortech.2008.12.004

    Article  Google Scholar 

  62. Avellar BK, Glasser WG (1998) Steam-assisted biomass fractionation. I. Process considerations and economic evaluation. Biomass Bioenerg 14:205–218. https://doi.org/10.1016/j.biortech.2008.12.004

    Article  Google Scholar 

  63. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599. https://doi.org/10.1021/cr900354u

    Article  Google Scholar 

  64. Crestini C, Pro P, Neri V, Saladino R (2005) Methyltrioxorhenium: a new catalyst for the activation of hydrogen peroxide to the oxidation of lignin and lignin model compounds. Bioorgan Med Chem 13:2569–2578. https://doi.org/10.1016/j.bmc.2005.01.049

    Article  Google Scholar 

  65. Gaspar AR, Gamelas JAF, Evtuguin DV, Neto CP (2007) Alternatives for lignocellulosic pulp delignification using polyoxometalates and oxygen: a review. Green Chem 9:717–730. https://doi.org/10.1039/b607824a

    Article  Google Scholar 

  66. Crestini C, Dauria M (1997) Singlet oxygen in the photodegradation of lignin models. Tetrahedron 53:7877–7888. https://doi.org/10.1016/S0040-4020(97)00460-2

    Article  Google Scholar 

  67. Mahdavi B, Lafrance A, Martel A, Lessard J, Me´Nard H, Brossard L, (1997) Electrocatalytic hydrogenolysis of lignin model dimers at Raney nickel electrodes. J Appl Electrochem 27:605–611. https://doi.org/10.1023/A:1018463131891

    Article  Google Scholar 

  68. Lee CL, Ollis DF (1984) Catalytic hydrodeoxygenation of benzofuran and o-ethylphenol. J Catal 15:325–331. https://doi.org/10.1016/0021-9517(84)90193-3

    Article  Google Scholar 

  69. Amen-Chen C, Pakdel H, Roy C (2001) Production of monomeric phenols by thermochemical conversion of biomass: a review. Bioresour Technol 79:277–299. https://doi.org/10.1016/S0960-8524(00)00180-2

    Article  Google Scholar 

  70. Pu Y, Jiang N, Ragauskas AJ (2007) Ionic liquid as a green solvent for lignin. J Wood Chem Technol 27:23–33. https://doi.org/10.1080/02773810701282330

    Article  Google Scholar 

  71. Partenheimer W (2009) The aerobic oxidative cleavage of lignin to produce hydroxyaromatic benzaldehydes and carboxylic acids via metal/bromide catalysts in acetic acid/water mixtures. Adv Synth Catal 351:456–466. https://doi.org/10.1002/adsc.200800614

    Article  Google Scholar 

  72. Britt PF, Buchanan AC, Cooney MJ, Martineau DR (2000) Flash vacuum pyrolysis of methoxy-substituted lignin model compounds. J Organ Chem 65:1376–1389. https://doi.org/10.1021/jo991479k

    Article  Google Scholar 

  73. Koyama M (1993) Hydrocracking of lignin-related model dimers. Bioresour Technol 44:209–215. https://doi.org/10.1016/0960-8524(93)90154-4

    Article  Google Scholar 

  74. Miller JE, Evans L, Littlewolf A, Trudell DE (1999) Batch microreactor studies of lignin and lignin model compound depolymerization by bases in alcohol solvents. Fuel 78:1363–1366. https://doi.org/10.1016/S0016-2361(99)00072-1

    Article  Google Scholar 

  75. Kallury RKMR, Restivo WM, Tidwell TT, Boocock DGB, Crimi A, Douglas J (1985) Hydrodeoxygenation of hydroxy, methoxy and methyl phenols with molybdenum oxide/nickel oxide/alumina catalyst. J Catal 96:535–543. https://doi.org/10.1016/0021-9517(85)90321-5

    Article  Google Scholar 

  76. Fabbri C, Aurisicchio C, Lanzalunga O (2008) Iron porphyrins-catalysed oxidation of α-alkyl substituted mono and dimethoxylated benzyl alcohols. Cent Eur J Chem 6:145–153. https://doi.org/10.2478/s11532-008-0005-8

    Article  Google Scholar 

  77. Hu TQ, James BR, Rettig SJ, Lee CL (1997) Stereoselective hydrogenation of lignin degradation model compounds. Can J Chem 75:1234–1239. https://doi.org/10.1139/v97-149

    Article  Google Scholar 

  78. Bozell JJ, Hames BR, Dimmel DR (1995) Cobalt-schiff base complex-catalyzed oxidation of parasubstituted phenolics-prepartion of benzoquinones. J Organ Chem 60:2398–2404. https://doi.org/10.1002/chin.199536112

    Article  Google Scholar 

  79. Adler E (1977) Lignin chemistry-past, present and future. Wood Sci Technol 11:169–218. https://doi.org/10.1007/BF00365615

    Article  Google Scholar 

  80. Kim S, Chmely SC, Nimos MR, Bomble YJ, Foust TD, Paton RS (2011) Computational study of bond dissociation enthalpies for a large range of native and modified lignins. J Phys Chem Lett 2:2846–2852. https://doi.org/10.1021/jz201182w

    Article  Google Scholar 

  81. Pan X, Kadla JF, Ehara K, Gilkes N, Saddler JN (2006) Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J Agr Food Chem 54:5806–5813. https://doi.org/10.1021/jf0605392

    Article  Google Scholar 

  82. Liew RK, Nam WL, Chong MY, Phang XY, Su MH, Yek PNY (2018) Oil palm waste: an abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications. Process Saf Environ 115:57–69. https://doi.org/10.1016/j.psep.2017.10.005

    Article  Google Scholar 

  83. Anderson EM, Katahira R, Reed M, Resch MG, Karp EM, Beckham GT (2016) Reductive catalytic fractionation of corn stover lignin. ACS Sustain Chem Eng 4:6940–6950. https://doi.org/10.1021/acssuschemeng.6b01858

    Article  Google Scholar 

  84. Kim JY, Oh S, Hwang H, Kim UJ, Choi JW (2013) Structural features and thermal degradation properties of various lignin macromolecules obtained from poplar wood (Populus albaglandulosa). Polym Degrad Stabil 98:1671–1678. https://doi.org/10.1016/j.polymdegradstab.2013.06.008

    Article  Google Scholar 

  85. El Mansouri NE, Salvado J (2006) Structural characterization of technical lignins for the production of adhesives: application to lignosulfonate, kraft, soda-anthraquinone, organosolv and ethanol process lignins. Ind Crop Prod 24:8–16. https://doi.org/10.1016/j.indcrop.2005.10.002

    Article  Google Scholar 

  86. Gioia C, Lo Re G, Lawoko M, Berglund L (2018) Tunable thermosetting epoxies based on fractionated and well-characterized lignins. J Am Chem Soc 140:4054–4061. https://doi.org/10.1021/jacs.7b13620

    Article  Google Scholar 

  87. Pu Y, Cao S, Ragauskas AJ (2011) Application of quantitative P-31 NMR in biomass lignin and biofuel precursors characterization. Energ Environ Sci 4:3154–3166. https://doi.org/10.1039/c1ee01201k

    Article  Google Scholar 

  88. Jeong K, Jeong HJ, Lee G, Kim SH, Kim KH, Yoo CG (2020) Catalytic effect of alkali and alkaline earth metals in lignin pyrolysis: a density functional theory study. Energ Fuel 34:9734–9740. https://doi.org/10.1021/acs.energyfuels.0c01897

    Article  Google Scholar 

  89. Tymchyshyn M, Rezayan A, Yuan Z, Zhang Y, Xu CC (2020) Reductive hydroprocessing of hydrolysis lignin over efficient bimetallic catalyst MoRu/AC. Ind Eng Chem Res 59:17239–17249. https://doi.org/10.1021/acs.iecr.0c01151

    Article  Google Scholar 

  90. Wang M, Zhang X, Li H, Lu J, Liu M, Wang F (2018) Carbon modification of nickel catalyst for depolymerization of oxidized lignin to aromatics. ACS Catal 8:1614–1620. https://doi.org/10.1021/acscatal.7b03475

    Article  Google Scholar 

  91. Si X, Chen J, Lu F, Liu X, Ren Y, Lu R (2019) Immobilized Ni clusters in mesoporous aluminum silica nanospheres for catalytic hydrogenolysis of lignin. ACS Sustain Chem Eng 7:19034–19041. https://doi.org/10.1021/acssuschemeng.9b04746

    Article  Google Scholar 

  92. Tyrone Ghampson I, Sepulveda C, Garcia R, Garcia Fierro JL, Escalona N, DeSisto WJ (2012) Comparison of alumina- and SBA-15-supported molybdenum nitride catalysts for hydrodeoxygenation of guaiacol. Appl Catal A-Gen 435:51–60. https://doi.org/10.1016/j.apcata.2012.05.039

    Article  Google Scholar 

  93. Li H, Liu Z (2019) Hydrodeoxygenation of vanillin as model compound for pyrolysis oil over carboxylic carbon nanotubes-supported Ni catalysts. Bioresour Technol Rep 5:86–90. https://doi.org/10.1016/j.biteb.2018.12.001

    Article  Google Scholar 

  94. Du B, Liu C, Wang X, Han Y, Guo Y, Li H (2020) Renewable lignin-based carbon nanofiber as Ni catalyst support for depolymerization of lignin to phenols in supercritical ethanol/water. Renew Energ 147:1331–1339. https://doi.org/10.1016/j.renene.2019.09.108

    Article  Google Scholar 

  95. Wang D, Li G, Zhang C, Wang Z, Li X (2019) Nickel nanoparticles inlaid in lignin-derived carbon as high effective catalyst for lignin depolymerization. Bioresour Technol 289:121629. https://doi.org/10.1016/j.biortech.2019.121629

    Article  Google Scholar 

  96. Lopez M, Palacio R, Royer S, Mamede AS, Fernandez JJ (2020) Mesostructured CMK-3 carbon supported Ni-ZrO2 as catalysts for the hydrodeoxygenation of guaiacol. Micropor Mesopor Mat 292:109694. https://doi.org/10.1016/j.micromeso.2019.109694

    Article  Google Scholar 

  97. Zerva C, Karakoulia SA, Kalogiannis KG, Margellou A, Iliopoulou EF, Lappas AA (2020) Hydrodeoxygenation of phenol and biomass fast pyrolysis oil (bio-oil) over Ni/WO3-ZrO2 catalyst. Catal Today. https://doi.org/10.1016/j.cattod.2020.08.029

    Article  Google Scholar 

  98. Yang F, Wang H, Han J, Ge Q, Zhu X (2019) Enhanced selective deoxygenation of m-cresol to toluene on Ni/SiO2 catalysts derived from nickel phyllosilicate. Catal Today 330:149–156. https://doi.org/10.1016/j.cattod.2018.02.035

    Article  Google Scholar 

  99. Lu M, Jiang Y, Sun Y, Zhang P, Zhu J, Li M (2020) Hydrodeoxygenation of guaiacol catalyzed by ZrO2-CeO2-supported nickel catalysts with high loading. Energ Fuel 34:4685–4692. https://doi.org/10.1021/acs.energyfuels.0c00445

    Article  Google Scholar 

  100. Totong S, Daorattanachai P, Laosiripojana N, Idem R (2020) Catalytic depolymerization of alkaline lignin to value-added phenolic-based compounds over Ni/CeO2-ZrO2 catalyst synthesized with a one-step chemical reduction of Ni species using NaBH4 as the reducing agent. Fuel Process Technol 198:106248. https://doi.org/10.1016/j.fuproc.2019.106248

    Article  Google Scholar 

  101. Resende KA, Braga AH, Noronha FB, Hori CE (2019) Hydrodeoxygenation of phenol over Ni/Ce1-xNbxO2 catalysts. Appl Catal B-Environ 245:100–113. https://doi.org/10.1016/j.apcatb.2018.12.040

    Article  Google Scholar 

  102. Jiang W, Cao J-P, Zhu C, Xie T, Zhao X-Y, Zhao M et al (2021) Selective cleavage of lignin-derived diphenyl ether C-O bond over weakly acidic Ni/Nb2O5 catalyst. Fuel 295:120635. https://doi.org/10.1016/j.fuel.2021.120635

    Article  Google Scholar 

  103. Dou X, Li W, Zhu C, Jiang X (2021) Catalytic waste Kraft lignin hydrodeoxygenation to liquid fuels over a hollow Ni-Fe catalyst. Appl Catal B-Environ 287:119975. https://doi.org/10.1016/j.apcatb.2021.119975

    Article  Google Scholar 

  104. Zhang X, Tang W, Zhang Q, Wang T, Ma L (2018) Hydrodeoxygenation of lignin-derived phenoic compounds to hydrocarbon fuel over supported Ni-based catalysts. Appl Energ 227:73–79. https://doi.org/10.1016/j.apenergy.2017.08.078

    Article  Google Scholar 

  105. Yang Y, Qiao L, Hao J, Shi H, Lv G (2019) Hydrodeoxygenation upgrading of bio-oil on Ni-based catalysts with low Ni loading. Chem Eng Sci 208:115154. https://doi.org/10.1016/j.ces.2019.08.012

    Article  Google Scholar 

  106. Li W, Dou X, Zhu C, Wang J, Chang H, Jameel H (2018) Production of liquefied fuel from depolymerization of kraft lignin over a novel modified nickel/H-beta catalyst. Bioresour Technol 269:346–354. https://doi.org/10.1016/j.biortech.2018.08.125

    Article  Google Scholar 

  107. Zhou X, Wei X-Y, Ma Y-M, Zong Z-M (2021) Highly selective catalytic hydrocracking >CH-O- bridged bonds in an alkali lignin over Ni/Hβ. Fuel 287:119474. https://doi.org/10.1016/j.fuel.2020.119474

    Article  Google Scholar 

  108. López M, Palacio R, Mamede AS, Fernández JJ, Royer S (2020) Hydrodeoxygenation of guaiacol into cyclohexane over mesoporous silica supported Ni-ZrO2 catalyst. Micropor Mesopor Mat 309:110452. https://doi.org/10.1016/j.micromeso.2020.110452

    Article  Google Scholar 

  109. Yang Y, Lv G, Deng L, Lu B, Li J, Zhang J (2017) Renewable aromatic production through hydrodeoxygenation of model bio-oil over mesoporous Ni/SBA-15 and Co/SBA-15. Micropor Mesopor Mat 250:47–54. https://doi.org/10.1016/j.micromeso.2017.05.022

    Article  Google Scholar 

  110. Yang Y, Hao J, Lv G (2019) Comparative study of catalytic hydrodeoxygenation performance over SBA-15 and TiO2 supported 20 wt% Ni for bio-oil upgrading. Fuel 253:630–636. https://doi.org/10.1016/j.fuel.2019.05.060

    Article  Google Scholar 

  111. Vargas-Villagran H, Flores-Villeda MA, Puente-Lee I, Solis-Casados DA, Gomez-Cortes A, Diaz-Guerrero G (2020) Supported nickel catalysts for anisole hydrodeoxygenation: increase in the selectivity to cyclohexane. Catal Today 349:26–41. https://doi.org/10.1016/j.cattod.2018.07.057

    Article  Google Scholar 

  112. Tieuli S, Maki-Arvela P, Peurla M, Eranen K, Warna J (2019) Cruciani G (2019) Hydrodeoxygenation of isoeugenol over Ni-SBA-15: kinetics and modelling. Appl Catal A-Gen 580:1–10. https://doi.org/10.1016/j.apcata.2019.04.028

    Article  Google Scholar 

  113. Wang X, Rinaldi R (2016) Bifunctional Ni catalysts for the one-pot conversion of organosolv lignin into cycloalkanes. Catal Today 269:48–55. https://doi.org/10.1016/j.cattod.2015.11.047

    Article  Google Scholar 

  114. Xu Y, Chen P, Lv W, Wang C, Ma L, Zhang Q (2021) Hydrogenolysis of organosolv hydrolyzed lignin over high-dispersion Ni/Al-SBA-15 catalysts for phenolic monomers. Chinese J Chem Eng 32:307–314. https://doi.org/10.1016/j.cjche.2020.10.008

    Article  Google Scholar 

  115. Li X, Zhang J, Liu B, Liu J, Wang C, Chen G (2019) Hydrodeoxygenation of lignin-derived phenols to produce hydrocarbons over Ni/Al-SBA-15 prepared with different impregnants. Fuel 243:314–321. https://doi.org/10.1016/j.fuel.2019.01.126

    Article  Google Scholar 

  116. Li X, Yin H, Zhang J, Liu J, Chen G (2020) Effect of organic template removal approaches on physiochemical characterization of Ni/Al-SBA-15 and eugenol hydrodeoxygenation. J Solid State Chem 282:121063. https://doi.org/10.1016/j.jssc.2019.121063

    Article  Google Scholar 

  117. Barton RR, Carrier M, Segura C, Fierro JLG, Park S, Lamb HH (2018) Ni/HZSM-5 catalyst preparation by deposition-precipitation. Part 2. Catalytic hydrodeoxygenation reactions of lignin model compounds in organic and aqueous systems. Appl Catal A-Gen 562:294–309. https://doi.org/10.1016/j.apcata.2018.06.012

    Article  Google Scholar 

  118. Liu X, Jiang Z, Feng S, Zhang H, Li J, Hu C (2019) Catalytic depolymerization of organosolv lignin to phenolic monomers and low molecular weight oligomers. Fuel 244:247–257. https://doi.org/10.1016/j.fuel.2019.01.117

    Article  Google Scholar 

  119. Li W, Li F, Wang H, Liao M, Li P, Zheng J (2020) Hierarchical mesoporous ZSM-5 supported nickel catalyst for the catalytic hydrodeoxygenation of anisole to cyclohexane. Mol Catal 480:110642. https://doi.org/10.1016/j.mcat.2019.110642

    Article  Google Scholar 

  120. Li W, Wang H, Wu X, Betancourt LE, Tu C, Liao M (2020) Ni/hierarchical ZSM-5 zeolites as promising systems for phenolic bio-oil upgrading: guaiacol hydrodeoxygenation. Fuel 274:117859. https://doi.org/10.1016/j.fuel.2020.117859

    Article  Google Scholar 

  121. Taghvaei H, Moaddeli A, Khalafi-Nezhad A, Iulianelli A (2021) Catalytic hydrodeoxygenation of lignin pyrolytic-oil over Ni catalysts supported on spherical Al-MCM-41 nanoparticles: effect of Si/Al ratio and Ni loading. Fuel 293:120493. https://doi.org/10.1016/j.fuel.2021.120493

    Article  Google Scholar 

  122. Gutierrez-Rubio S, Berenguer A, Prech J, Opanasenko M, Ochoa-Hernandez C, Pizarro P (2020) Guaiacol hydrodeoxygenation over Ni2P supported on 2D-zeolites. Catal Today 345:48–58. https://doi.org/10.1016/j.cattod.2019.11.015

    Article  Google Scholar 

  123. Gutiérrez-Rubio S, Moreno I, Serrano DP, Coronado JM (2019) Hydrotreating of guaiacol and acetic acid blends over Ni2P/ZSM-5 catalysts: elucidating molecular interactions during bio-oil upgrading. ACS Omega 4:21516–21528. https://doi.org/10.1021/acsomega.9b03221

    Article  Google Scholar 

  124. de Souza PM, Inocêncio CVM, Perez VI, Rabelo-Neto RC, Gonçalves VOO, Jacobs G (2020) Hydrodeoxygenation of phenol using nickel phosphide catalysts. Study of the effect of the support. Catal Today 356:366–375. https://doi.org/10.1016/j.cattod.2019.08.028

    Article  Google Scholar 

  125. Yu Z, Wang A, Liu S, Yao Y, Sun Z, Li X (2019) Hydrodeoxygenation of phenolic compounds to cycloalkanes over supported nickel phosphides. Catal Today 319:48–56. https://doi.org/10.1016/j.cattod.2018.05.012

    Article  Google Scholar 

  126. Goncalves VOO, de Souza PM, Cabioc’h T, da Silva VT, Noronha FB, Richard F (2019) Effect of P/Ni ratio on the performance of nickel phosphide phases supported on zirconia for the hydrodeoxygenation of m-cresol. Catal Commun 119:33–38. https://doi.org/10.1016/j.catcom.2018.09.015

    Article  Google Scholar 

  127. Sun YF, Zhang AM, Yin Y, Dong YM, Cui YC, Zhang X (2007) The investigation of adsorptive performance on modified multi-walled carbon nanotubes by mechanical ball milling. Mater Chem Phys 101:30–34. https://doi.org/10.1016/j.matchemphys.2006.02.012

    Article  Google Scholar 

  128. Tavasoli A, Abbaslou RMM, Trepanier M, Dalai AK (2008) Fischer-Tropsch synthesis over cobalt catalyst supported on carbon nanotubes in a slurry reactor. Appl Catal A-Gen 345:134–142. https://doi.org/10.1016/j.apcata.2008.04.030

    Article  Google Scholar 

  129. Su F, Lee FY, Lv L, Liu J, Tian XN, Zhao XS (2007) Sandwiched ruthenium/carbon nanostructures for highly active heterogeneous hydrogenation. Adv Funct Mater 17:1926–1931. https://doi.org/10.1002/adfm.200700067

    Article  Google Scholar 

  130. Feng Q, Li H, Tan Z, Huang Z, Jiang L, Zhou H (2018) Design and preparation of three-dimensional MnO/N-doped carbon nanocomposites based on waste biomass for high storage and ultra-fast transfer of lithium ions. J Mater Chem A 6:19479–19487. https://doi.org/10.1039/c8ta07096b

    Article  Google Scholar 

  131. Wen X, Yang X, Li M, Bai L, Guan J (2019) Co/CoOx nanoparticles inlaid onto nitrogen-doped carbon-graphene as a trifunctional electrocatalyst. Electrochim Acta 296:830–841. https://doi.org/10.1016/j.electacta.2018.11.129

    Article  Google Scholar 

  132. Cheng K, Subramanian V, Carvalho A, Ordomsky VV, Wang Y, Khodakov AY (2016) The role of carbon pre-coating for the synthesis of highly efficient cobalt catalysts for Fischer-Tropsch synthesis. J Catal 337:260–271. https://doi.org/10.1016/j.jcat.2016.02.019

    Article  Google Scholar 

  133. Qin H, Kang S, Wang Y, Liu H, Ni Z, Huang Y (2016) Lignin-based fabrication of Co@C core-shell nanoparticles as efficient catalyst for selective Fischer-Tropsch synthesis of C5+ compounds. ACS Sustain Chem Eng 4:1240–1247. https://doi.org/10.1021/acssuschemeng.5b01269

    Article  Google Scholar 

  134. Li X, Chen G, Liu C, Ma W, Yan B, Zhang J (2017) Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: a critical review. Renew Sust Energ Rev 71:296–308. https://doi.org/10.1016/j.rser.2016.12.057

    Article  Google Scholar 

  135. Zabeti M, Daud WMAW, Aroua MK (2009) Activity of solid catalysts for biodiesel production: a review. Fuel Process Technol 90:770–777. https://doi.org/10.1016/j.apcata.2013.10.052

    Article  Google Scholar 

  136. Liu S, Zhang X, Li J, Zhao N, Wei W, Sun Y (2008) Preparation and application of stabilized mesoporous MgO-ZrO2 solid base. Catal Commun 9:1527–1532. https://doi.org/10.1016/j.catcom.2007.12.007

    Article  Google Scholar 

  137. Zhang S, Su L, Liu L, Fang G (2015) Degradation on hydrogenolysis of soda lignin using CuO/SO42-/ZrO2 as catalyst. Ind Crop Prod 77:451–457. https://doi.org/10.1016/j.indcrop.2015.07.039

    Article  Google Scholar 

  138. Jiang B, Zhang Y, Zhao HF, Guo TY, Wu WJ, Jin YC (2019) Structure-antioxidant activity relationship of active oxygen catalytic lignin and lignin-carbohydrate complex. Int J Biol Macromol 139:21–29. https://doi.org/10.1016/j.ijbiomac.2019.07.134

    Article  Google Scholar 

  139. Lukinskas P, Kuba S, Grasselli RK, Knoezinger H (2007) Chromium promotion of tungstated zirconia catalysts for the isomerization of n-alkanes. Top Catal 46:87–92. https://doi.org/10.1007/s11244-007-0318-4

    Article  Google Scholar 

  140. Baertsch CD, Komala KT, Chua YH, Iglesia E (2002) Genesis of Bronsted acid sites during dehydration of 2-butanol on tungsten oxide catalysts. J Catal 205:44–57. https://doi.org/10.1006/jcat.2001.3426

    Article  Google Scholar 

  141. Mai F, Wen Z, Bai Y, Ma Z, Cui K, Wu K (2019) Selective conversion of enzymatic hydrolysis lignin into alkylphenols in supercritical ethanol over a WO3/gamma-Al2O3 catalyst. Ind Eng Chem Res 58:10255–10263. https://doi.org/10.1021/acs.iecr.9b01593

    Article  Google Scholar 

  142. Guo H, Qi Z, Liu Y, Xia H, Li L, Huang Q (2019) Tungsten-based catalysts for lignin depolymerization: the role of tungsten species in C-O bond cleavage. Catal Sci Technol 9:2144–2151. https://doi.org/10.1039/c9cy00251k

    Article  Google Scholar 

  143. Guan W, Tsang CW, Lin CSK, Len C, Hu H, Liang C (2020) A review on high catalytic efficiency of solid acid catalysts for lignin valorization. Bioresour Technol 298:122432. https://doi.org/10.1016/j.biortech.2019.122432

    Article  Google Scholar 

  144. Sullivan MM, Chen CJ, Bhan A (2016) Catalytic deoxygenation on transition metal carbide catalysts. Catal Sci Technol 6:602–616. https://doi.org/10.1039/c5cy01665g

    Article  Google Scholar 

  145. Jongerius AL, Gosselink RW, Dijkstra J, Bitter JH, Bruijnincx PCA, Weckhuysen BM (2013) Carbon nanofiber supported transition-metal carbide catalysts for the hydrodeoxygenation of guaiacol. ChemCatChem 5:2964–2972. https://doi.org/10.1002/cctc.201300280

    Article  Google Scholar 

  146. Romero Y, Richard F, Brunet S (2018) Hydrodeoxygenation of 2-ethylphenol as a model compound of bio-crude over sulfided Mo-based catalysts: promoting effect and reaction mechanism. Appl Catal B-Environ 98:213–223. https://doi.org/10.1016/j.apcatb.2010.05.031

    Article  Google Scholar 

  147. Romero Y, Richard F, Reneme Y, Brunet S (2009) Hydrodeoxygenation of benzofuran and its oxygenated derivatives (2,3-dihydrobenzofuran and 2-ethylphenol) over NiMoP/Al2O3 catalyst. Appl Catal A-Gen 353:46–53. https://doi.org/10.1016/j.apcata.2008.10.022

    Article  Google Scholar 

  148. Alonso DM, Wettstein SG, Dumesic JA (2012) Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem Soc Rev 41:8075–8098. https://doi.org/10.1039/c2cs35188a

    Article  Google Scholar 

  149. Ambursa MM, Sudarsanam P, Voon LH, Abd Hamid SB, Bhargava SK (2017) Bimetallic Cu-Ni catalysts supported on MCM-41 and Ti-MCM-41 porous materials for hydrodeoxygenation of lignin model compound into transportation fuels. Fuel Process Technol 162:87–97. https://doi.org/10.1016/j.fuproc.2017.03.008

    Article  Google Scholar 

  150. Hamid SBA, Ambursa MM, Sudarsanam P, Voon LH, Bhargava SK (2017) Effect of Ti loading on structure-activity properties of Cu-Ni/Ti-MCM-41 catalysts in hydrodeoxygenation of guaiacol. Catal Commun 94:18–22. https://doi.org/10.1016/j.catcom.2017.02.006

    Article  Google Scholar 

  151. Cheng C, Li P, Yu W, Shen D, Gu S (2021) Catalytic hydrogenolysis of lignin in ethanol/isopropanol over an activated carbon supported nickel-copper catalyst. Bioresour Technol 319:124238. https://doi.org/10.1016/j.biortech.2020.124238

    Article  Google Scholar 

  152. Cheng C, Li P, Yu W, Shen D, Jiang X, Gu S (2020) Nonprecious metal/bimetallic catalytic hydrogenolysis of lignin in a mixed-solvent system. ACS Sustain Chem Eng 8:16217–16228. https://doi.org/10.1021/acssuschemeng.0c05362

    Article  Google Scholar 

  153. Kong L, Liu C, Gao J, Wang Y, Dai L (2019) Efficient and controllable alcoholysis of Kraft lignin catalyzed by porous zeolite-supported nickel-copper catalyst. Bioresour Technol 276:310–317. https://doi.org/10.1016/j.biortech.2019.01.015

    Article  Google Scholar 

  154. Nesterov NS, Smirnov AA, Pakharukova VP, Yakovlev VA, Martyanov ON (2020) Advanced green approaches for the synthesis of NiCu-containing catalysts for the hydrodeoxygenation of anisole. Catal Today. https://doi.org/10.1016/j.cattod.2020.09.006

    Article  Google Scholar 

  155. Han Q, Rehman MU, Wang J, Rykov A, Gutierrez OY, Zhao Y (2019) The synergistic effect between Ni sites and Ni-Fe alloy sites on hydrodeoxygenation of lignin-derived phenols. Appl Catal B-Environ 253:348–358. https://doi.org/10.1016/j.apcatb.2019.04.065

    Article  Google Scholar 

  156. Chen Q, Cai C, Zhang X, Zhang Q, Chen L, Li Y (2020) Amorphous FeNi–ZrO2-catalyzed hydrodeoxygenation of lignin-derived phenolic compounds to naphthenic fuel. ACS Sustain Chem Eng 8:9335–9345. https://doi.org/10.1021/acssuschemeng.0c01457

    Article  Google Scholar 

  157. Agarwal A, Park S-J, Park J-H (2019) Upgrading of Kraft lignin-derived bio-oil over hierarchical and nonhierarchical Ni and/or Zn/HZSM5 catalysts. Ind Eng Chem Res 58:22791–22803. https://doi.org/10.1021/acs.iecr.9b05348

    Article  Google Scholar 

  158. Yue X, Zhang L, Sun L, Gao S, Gao W, Cheng X et al (2021) Highly efficient hydrodeoxygenation of lignin-derivatives over Ni-based catalyst. Appl Catal B-Environ 293:120243. https://doi.org/10.1016/j.apcatb.2021.120243

    Article  Google Scholar 

  159. Li F, Wang X, Zheng Y, Chen J (2018) Influence of metallic promoters on the performance of Ni/SiO2 catalyst in the hydrodeoxygenation of anisole. J Fuel Chem Technol 46:75–83. https://doi.org/10.1016/S1872-5813(18)30005-7

    Article  Google Scholar 

  160. Raikwar D, Munagala M, Majumdar S, Shee D (2019) Hydrodeoxygenation of guaiacol over Mo, W and Ta modified supported nickel catalysts. Catal Today 325:117–130. https://doi.org/10.1016/j.cattod.2018.09.039

    Article  Google Scholar 

  161. Chen M, Shi J, Wang Y, Tang Z, Yang Z, Wang J et al (2021) Conversion of Kraft lignin to phenol monomers and liquid fuel over trimetallic catalyst W-Ni-Mo/sepiolite under supercritical ethanol. Fuel 303:121332. https://doi.org/10.1016/j.fuel.2021.121332

    Article  Google Scholar 

  162. Niu X, Wang L, Chen J (2020) Improved performance of SiO2-supported Ni3Ga intermetallic compound for deoxygenation of phenolic compounds. Catal Commun 140:106001. https://doi.org/10.1016/j.catcom.2020.106001

    Article  Google Scholar 

  163. Zheng Y, Zhao N, Chen J (2019) Enhanced direct deoxygenation of anisole to benzene on SiO2-supported NiGa alloy and intermetallic compound. Appl Catal B-Environ 250:280–291. https://doi.org/10.1016/j.apcatb.2019.02.073

    Article  Google Scholar 

  164. Zhou M, Chen C, Liu P, Xia H, Li J, Sharma BK (2020) Catalytic hydrotreatment of β-O-4 ether in lignin: cleavage of the C-O bond and hydrodeoxygenation of lignin-derived phenols in one pot. ACS Sustain Chem Eng 8:14511–14523. https://doi.org/10.1021/acssuschemeng.0c04941

    Article  Google Scholar 

  165. García-Mendoza C, Santolalla-Vargas CE, Woolfolk LG, del Ángel P, de los Reyes JA, (2020) Effect of TiO2 in supported NiWS catalysts for the hydrodeoxygenation of guaiacol. Catal Today. https://doi.org/10.1016/j.cattod.2020.08.026

    Article  Google Scholar 

  166. Broglia F, Rimoldi L, Meroni D, De Vecchi S, Morbidelli M, Ardizzone S (2019) Guaiacol hydrodeoxygenation as a model for lignin upgrading. Role of the support surface features on Ni-based alumina-silica catalysts. Fuel 243:501–508. https://doi.org/10.1016/j.fuel.2019.01.157

    Article  Google Scholar 

  167. Liu M, Zhang J, Zheng L, Fan G, Yang L, Li F (2020) Significant promotion of surface oxygen vacancies on bimetallic CoNi nanocatalysts for hydrodeoxygenation of biomass-derived vanillin to produce methylcyclohexanol. ACS Sustain Chem Eng 8:6075–6089. https://doi.org/10.1021/acssuschemeng.0c01015

    Article  Google Scholar 

  168. Cheng Q, Liu D, Wang M, Wang Y (2019) Study on catalytic performance of Ni-Co-P amorphous alloy for HDO of vanillin. J Fuel Chem Technol 47:1205–1213. https://doi.org/10.1016/S1872-5813(19)30047-7

    Article  Google Scholar 

  169. Kordouli E, Pawelec B, Kordulis C, Lycourghiotis A, Fierro JLG (2018) Hydrodeoxygenation of phenol on bifunctional Ni-based catalysts: effects of Mo promotion and support. Appl Catal B-Environ 238:147–160. https://doi.org/10.1016/j.apcatb.2018.07.012

    Article  Google Scholar 

  170. Wang C, Li Z, Wu K, Liu J, Yang X, Kong X (2020) Synthesis of Ni-Mo-N catalysts for removing oxygen from acetophenone. Biomass Bioenerg 133:105448. https://doi.org/10.1016/j.biombioe.2019.105448

    Article  Google Scholar 

  171. Bakhtyari A, Sakhayi A, Rahimpour MR, Raeissi S (2020) Upgrading of cyclohexanone to hydrocarbons by hydrodeoxygenation over nickel-molybdenum catalysts. Int J Hydrogen Energ 45:11062–11076. https://doi.org/10.1016/j.ijhydene.2020.02.036

    Article  Google Scholar 

  172. Sangnikul P, Phanpa C, Xiao R, Zhang H, Reubroycharoen P, Kuchonthara P (2019) Role of copper- or cerium-promoters on NiMo/γ-Al2O3 catalysts in hydrodeoxygenation of guaiacol and bio-oil. Appl Catal A-Gen 574:151–160. https://doi.org/10.1016/j.apcata.2019.02.004

    Article  Google Scholar 

  173. Dieu-Phuong P, The Ky V, Van Nhieu L, Kim J, Lee EY (2020) Spray pyrolysis synthesis of bimetallic NiMo/Al2O3-TiO2 catalyst for hydrodeoxygenation of guaiacol: effects of bimetallic composition and reduction temperature. J Ind Eng Chem 83:351–358. https://doi.org/10.1016/j.jiec.2019.12.008

    Article  Google Scholar 

  174. Mora-Vergara ID, Hernández Moscoso L, Gaigneaux EM, Giraldo SA, Baldovino-Medrano VG (2018) Hydrodeoxygenation of guaiacol using NiMo and CoMo catalysts supported on alumina modified with potassium. Catal Today 302:125–135. https://doi.org/10.1016/j.cattod.2017.07.015

    Article  Google Scholar 

  175. Li B, Liu Y, Li R, Yang T, Kai X (2020) Aluminum-water reactions assisted in situ hydrodeoxygenation of enzymolysis lignin from bioconversion of rice straw over NiMo catalyst. Ind Crop Prod 154:112727. https://doi.org/10.1016/j.indcrop.2020.112727

    Article  Google Scholar 

  176. Oregui-Bengoechea M, Gandarias I, Miletić N, Simonsen SF, Kronstad A, Arias PL (2017) Thermocatalytic conversion of lignin in an ethanol/formic acid medium with NiMo catalysts: role of the metal and acid sites. Appl Catal B-Environ 217:353–364. https://doi.org/10.1016/j.apcatb.2017.06.004

    Article  Google Scholar 

  177. Yang F, Wang H, Han J, Ge Q, Zhu X (2020) Influence of Re addition to Ni/SiO2 catalyst on the reaction network and deactivation during hydrodeoxygenation of m-cresol. Catal Today 347:79–86. https://doi.org/10.1016/j.cattod.2018.04.073

    Article  Google Scholar 

  178. Kong L, Zhang L, Gu J, Gou L, Xie L, Wang Y (2020) Catalytic hydrotreatment of Kraft lignin into aromatic alcohols over nickel-rhenium supported on niobium oxide catalyst. Bioresour Technol 299:122582. https://doi.org/10.1016/j.biortech.2019.122582

    Article  Google Scholar 

  179. Zhu YB, Guo J, Ma YL, Li YY (2020) Bifunctional Ni/CaO-HZSM-5 catalysts as a two-step strategy to produce n-hexanol from alkali lignin. Ind Eng Chem Res 59:13853–13860. https://doi.org/10.1021/acs.iecr.0c01827

    Article  Google Scholar 

  180. Hu J, Zhao M, Jiang B, Wu S, Lu P (2020) Catalytic transfer hydrogenolysis of native lignin to monomeric phenols over a Ni-Pd bimetallic catalyst. Energ Fuel 34:9754–9762. https://doi.org/10.1021/acs.energyfuels.0c01962

    Article  Google Scholar 

  181. Kim JY, Park SY, Choi IG, Choi JW (2018) Evaluation of RuxNi1-x/SBA-15 catalysts for depolymerization features of lignin macromolecule into monomeric phenols. Chem Eng J 336:640–648. https://doi.org/10.1016/j.cej.2017.11.118

    Article  Google Scholar 

  182. Zhu C, Cao JP, Zhao XY, Xie T, Zhao M, Wei XY (2019) Bimetallic effects in the catalytic hydrogenolysis of lignin and its model compounds on Nickel-Ruthenium catalysts. Fuel Process Technol 194:106126. https://doi.org/10.1016/j.fuproc.2019.106126

    Article  Google Scholar 

  183. Hu Y, Jiang G, Xu G, Mu X (2018) Hydrogenolysis of lignin model compounds into aromatics with bimetallic Ru-Ni supported onto nitrogen-doped activated carbon catalyst. Mol Catal 445:316–326. https://doi.org/10.1016/j.mcat.2017.12.009

    Article  Google Scholar 

  184. Li R, Qiu J, Chen H, Shu R, Chen Y, Liu Y (2020) Hydrodeoxygenation of phenolic compounds and raw lignin-oil over bimetallic RuNi catalyst: an experimental and modeling study focusing on adsorption properties. Fuel 281:118758. https://doi.org/10.1016/j.fuel.2020.118758

    Article  Google Scholar 

  185. Valdés-Martínez OU, Santolalla-Vargas CE, Santes V, de los Reyes JA, Pawelec B, Fierro JLG, (2019) Influence of calcination on metallic dispersion and support interactions for NiRu/TiO2 catalyst in the hydrodeoxygenation of phenol. Catal Today 329:149–155. https://doi.org/10.1016/j.cattod.2018.11.007

    Article  Google Scholar 

  186. Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A-Gen 407:1–19. https://doi.org/10.1016/j.apcata.2011.08.046

    Article  Google Scholar 

  187. Wang W, Yang Y, Luo H, Peng H, He B, Liu W (2011) Preparation of Ni(Co)-W-B amorphous catalysts for cyclopentanone hydrodeoxygenation. Catal Commun 12:1275–1279. https://doi.org/10.1016/j.catcom.2011.04.027

    Article  Google Scholar 

  188. Shylesh S, Gokhale AA, Ho CR, Bell AT (2017) Novel strategies for the production of fuels, lubricants, and chemicals from biomass. Accounts Chem Res 50:2589–2597. https://doi.org/10.1021/acs.accounts.7b00354

    Article  Google Scholar 

Download references

Funding

This research was financially supported by the National Natural Science Foundation of China (no. 21774059), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

Xinyu Lu: conceptualization, writing. Haoquan Guo: visualization, investigation. Dandan Wang: original draft preparation. Pengcheng Xiu, Jiajia Chen, and Yu Qin: visualization, investigation. Chaozhong Xu: reviewing, editing. Xiaoli Gu: writing, reviewing, editing, supervision.

Corresponding authors

Correspondence to Chaozhong Xu or Xiaoli Gu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Methods on lignin extraction, characterization, and conversion are summarized.

• Latest researches on lignin conversion over Ni-based catalysts are reviewed.

• Challenges and perspective on lignin further utilization have been proposed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Guo, H., Wang, D. et al. A review on catalytic conversion of lignin into high-value chemicals over Ni-based catalysts. Biomass Conv. Bioref. 13, 11339–11381 (2023). https://doi.org/10.1007/s13399-021-01903-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01903-1

Keywords

Navigation