Skip to main content

Advertisement

Log in

Enhanced Hydroconversion of Lignin-Derived Oxygen-Containing Compounds Over Bulk Nickel Catalysts Though Nb2O5 Modification

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of bimetallic Nb–Ni oxide catalysts with different Nb/Ni molar ratio have been prepared by chemical precipitation method. XRD, Raman and XPS results indicate that amorphous Nb2O5 species exist in the samples with a Nb/Ni ratio about 0.087. The as-synthesized bimetallic Nb–Ni oxides effectively promote the dispersion of NiO active components, as a result effectively inhibit the agglomeration of NiO particles. Ni0.92Nb0.08O sample with the largest surface area of 173 m2/g mainly consists of fold-like nanosheets and the amorphous Nb2O5 species are well-dispersed all over the bulk NiO. After the reduction in hydrogen, the Nb-promoted bulk nickel catalysts display better catalytic performance for hydrodeoxygenation of lignin-derived anisole to biofuels than bulk Ni catalyst. The selectivity to deoxygenated products with using Ni0.92Nb0.08 catalyst increases 2.5 fold to that with bulk Ni catalyst at 160 °C and 3 MPa H2, as a result of the synergistic effect between amorphous Nb2O5 species and metal Ni active sites. In addition, with further increase in the reaction temperature to 200 °C, deoxygenation almost goes quantitatively.

Graphical Abstract

High-specific-surface-area Nb–Ni oxides are prepared by using chemical precipitation, and display excellent HDO performance for lignin-derived compounds. Selectivity to deoxygenated products increases 2.5 folds over Ni0.92Nb0.08 than over bulk Ni catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Corma A, Iborra S, Velty A (2007) Chem Rev 107(6):2411–2502

    Article  CAS  Google Scholar 

  2. Huber GW, Corma A (2007) Angew Chem Int Ed 46(38):7184–7201

    Article  CAS  Google Scholar 

  3. Huber GW, Iborra S, Corma A (2006) Chem Rev 106(9):4044–4098

    Article  CAS  Google Scholar 

  4. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) Chem Rev 110(6):3552–3599

    Article  CAS  Google Scholar 

  5. Wang X, Rinaldi R (2012) Energy Environ Sci 5(8):8244

    Article  CAS  Google Scholar 

  6. Gutierrez A, Kaila RK, Honkela ML, Slioor R, Krause AOI (2009) Catal Today 147(3–4):239–246

    Article  CAS  Google Scholar 

  7. Deutsch KL, Shanks BH (2012) Appl Catal A 447–448:144–150

    Article  Google Scholar 

  8. Zhang XH, Zhang Q, Long, JX, Xu Y, Wang TJ, Ma LL, Li YP (2014) Bioresources 9(2):3347–3360

    CAS  Google Scholar 

  9. Garcia-Perez M, Chaala A, Pakdel H, Kretschmer D, Roy C (2007) Biomass Bioenerg 31(4):222–242

    Article  CAS  Google Scholar 

  10. Jin S, Xiao Z, Li C, Chen X, Wang L, Xing J, Li W, Liang C (2014) Catal Today 234:125–132

    Article  CAS  Google Scholar 

  11. Zhao C, Kou Y, Lemonidou AA, Li X, Lercher JA (2010) Chem Commun 46(3):412–414

    Article  CAS  Google Scholar 

  12. He J, Zhao C, Lercher JA (2012) J Am Chem Soc 134(51):20768–20775

    Article  CAS  Google Scholar 

  13. Sergeev AG, Hartwig JF (2011) Science 332(6028):439–443

    Article  CAS  Google Scholar 

  14. Zhang XH, Zhang Q, Wang TJ, Ma LL, Yu YX, Chen LG (2013) Bioresour Technol 134:73–80

    Article  Google Scholar 

  15. Zhang XH, Wang TJ, Ma LL, Zhang Q, Jiang T (2013) Bioresour Technol 127:306–311

    Article  CAS  Google Scholar 

  16. Bykova MV, Ermakov DY, Kaichev VV, Bulavchenko OA, Saraev AA, Lebedev MY, Yakovlev VА (2012) Appl Catal B 113–114:296–307

    Article  Google Scholar 

  17. Lee CR, Yoon JS, Suh Y-W, Choi J-W, Ha J-M, Suh DJ, Park Y-K (2012) Catal Commun 17:54–58

    Article  CAS  Google Scholar 

  18. Wang L, Li C, Jin S, Li W, Liang C (2014) Catal Lett 144(5):809–816

    Article  CAS  Google Scholar 

  19. Ohta H, Kobayashi H, Hara K, Fukuoka A (2011) Chem Commun 47(44):12209–12211

    Article  CAS  Google Scholar 

  20. Sun J, Karim AM, Zhang H, Kovarik L, Li XS, Hensley AJ, McEwen J-S, Wang YJ (2013) Catal 306:47–57

    Article  CAS  Google Scholar 

  21. Zhao C, Kou Y, Lemonidou AA, Li X, Lercher JA (2009) Angew Chem Int Ed 48(22):3987–3990

    Article  CAS  Google Scholar 

  22. Zhao C, Song W, Lercher JA (2012) ACS Catal 2(12):2714–2723

    Article  CAS  Google Scholar 

  23. Yan N, Yuan Y, Dykeman R, Kou Y, Dyson PJ (2010) Angew Chem Int Ed 49(32):5549–5553

    Article  CAS  Google Scholar 

  24. Wang H, Male J, Wang Y (2013) ACS Catal 3(5):1047–1070

    Article  CAS  Google Scholar 

  25. Jin S, Chen X, Li C, Tsang C-W, Lafaye G, Liang C (2016) ChemistrySelect 1(15):4949–4956

    Article  Google Scholar 

  26. Pham HN, Pagan-Torres YJ, Serrano-Ruiz JC, Wang D, Dumesic JA, Datye AK (2011) Appl Catal A 397(1–2):153–162

    Article  CAS  Google Scholar 

  27. Sumiya S, Oumi Y, Sadakane M, Sano T (2009) Appl Catal A 365(2):261–267

    Article  CAS  Google Scholar 

  28. West RM, Liu ZY, Peter M, Dumesic JA (2008) ChemSusChem 1(5):417–424

    Article  CAS  Google Scholar 

  29. Buitrago-Sierra R, Serrano-Ruiz JC, Rodríguez-Reinoso F, Sepúlveda-Escribano A, Dumesic JA (2012) Green Chem 14(12):3318–3324

    Article  CAS  Google Scholar 

  30. Jin S, Xiao Z, Chen X, Wang L, Guo J, Zhang M, Liang C (2015) Ind Eng Chem Res 54(8):2302–2310

    Article  CAS  Google Scholar 

  31. Savova B, Loridant S, Filkova D, Millet JMM (2010) Appl Catal A 390(1–2):148–157

    Article  CAS  Google Scholar 

  32. Rojas E, Delgado JJ, Guerrero-Pérez MO, Bañares MA (2013) Catal Sci Technol 3(12):3173–3182

    Article  CAS  Google Scholar 

  33. Rubio-Marcos F, Rojas E, López-Medina R, Guerrero-Pérez MO, Bañares MA, Fernandez JF (2011) ChemCatChem 3(10):1637–1645

    Article  CAS  Google Scholar 

  34. Heracleous E, Lemonidou AJ (2006) Catal 237(1):162–174

    Article  CAS  Google Scholar 

  35. Heracleous E, Delimitis A, Nalbandian L, Lemonidou AA (2007) Appl Catal A 325(2):220–226

    Article  CAS  Google Scholar 

  36. Heracleous E, Lemonidou AJ (2006) Catal 237(1):175–189

    Article  CAS  Google Scholar 

  37. Skoufa Z, Heracleous E, Lemonidou AA (2012) Catal Today 192(1):169–176

    Article  CAS  Google Scholar 

  38. Lee S-H, Cheong HM, Park N-G, Tracy CE, Mascarenhas A, Benson DK, Deb SK (2001) Solid State Ion 140(1):135–139

    Article  CAS  Google Scholar 

  39. Salagre P, Fierro J, Medina F, Sueiras JJ (1996) Mol Catal A 106(1):125–134

    Article  CAS  Google Scholar 

  40. López-Medina R, Fierro J, Guerrero-Pérez MO, Bañares MA (2010) Appl Catal A 375(1):55–62

    Article  Google Scholar 

  41. Alonso DM, Wettstein SG, Dumesic JA (2012) Chem Soc Rev 41(24):8075–8098

    Article  CAS  Google Scholar 

  42. Buendia J, Mottweiler J, Bolm C (2011) Chem Eur J 17(49):13877–13882

    Article  CAS  Google Scholar 

  43. Philippe M, Richard F, Hudebine D, Brunet S (2010) Appl Catal A 383(1–2):14–23

    Article  CAS  Google Scholar 

  44. Sepúlveda C, Escalona N, García R, Laurenti D, Vrinat M (2012) Catal Today 195(1):101–105

    Article  Google Scholar 

  45. Sun Y, Prins RJ (2009) Catal 267(2):193–201

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support provided by National Key Research & Development Program of the Ministry of Science and Technology of China (2016YFB0600305), National Natural Science Foundation of China (Nos. 21573031 and 21373038), Program for Excellent Talents in Dalian City (2016RD09) and Technological and Higher Education Institute of Hong Kong (THEi SG1617105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chi-Wing Tsang or Changhai Liang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 280 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Guan, W., Tsang, CW. et al. Enhanced Hydroconversion of Lignin-Derived Oxygen-Containing Compounds Over Bulk Nickel Catalysts Though Nb2O5 Modification. Catal Lett 147, 2215–2224 (2017). https://doi.org/10.1007/s10562-017-2085-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2085-6

Keywords

Navigation