Skip to main content

Advertisement

Log in

A comprehensive review on zinc(II) sequestration from wastewater using various natural/modified low-cost agro-waste sorbents

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Release of hazardous heavy metals into the environment by industries is one of the major problems affecting human health. Researchers worldwide are working on the preservation of the quality of water and the prevention of environmental contamination. Removal of heavy metals from wastewater by various methods has been widely researched. Heavy metal sequestration/remediation is considered expensive due to the use of non-regenerable metals and the high cost involved when conventional methods are used. Scientists are involved in the adsorption process and various materials, with various materials being used for this purpose. Adsorption is an efficient purification technique due to benefits like stabilization, utility, low cost, installation convenience, and efficiency. Adsorption reduces heavy metal levels to very low concentration through the use of low-cost agro-waste adsorbent materials such as agricultural/non-agricultural biomass, algal/food biomass, activated carbon/biochar, and zeolite/clay minerals. Adsorption of metal on an adsorbent is a complex problem, specifically agro-waste, as it is regulated by different variables. Complexation, chemisorption, surface adsorption, pore complexity, micro-precipitation, and ion-exchange are part of this process. In adsorption, the functional components of biological material such as sulphydryl, amido, hydroxyl, and carboxyl groups are attached to metal ions and are separated from wastewater. This review discusses how low-cost biosorbents like sawdust, leaves, fruit peels, and crop waste–like husk, shell, hull, fiber, residue, and biofertilizers can be used as adsorbent material for the removal of zinc(II) metal ions from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhou Y, Zhang Z, Zhang J (2016) & Xia, S, New insight into adsorption characteristics and mechanisms of the biosorbent from waste activated sludge for heavy metals, J. Environ Sci 45:248–256. https://doi.org/10.1016/j.jes.2016.03.007

    Article  Google Scholar 

  2. Siddiquee, S., Rovina, K., & Azad, S. A, Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review, J. Microb. Biochem. Technol., 07(06) (2015), https://doi.org/10.4172/1948-5948.1000243.

  3. Fu, F., & Wang, Q, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92(3) (2011) 407–418, https://doi.org/10.1016/j.jenvman.2010.11.011.

  4. Nuengmatcha P (2021) Mercapto-functionalized magnetic graphene quantum dots as adsorbent for Cd2+ removal from wastewater. Environmental Processes. https://doi.org/10.1007/s40710-021-00523-1

    Article  Google Scholar 

  5. Ahmadi, Shahin et al. (2019) The survey of application of the linear and nonlinear kinetic Models for the adsorption of nickel(II) by modified multi-walled carbon nanotubes. Appl. Water Sci. 9(4).

  6. Gabal E, Chatterjee S, Ahmed FK, Abd-Elsalam KA (2020) Carbon nanomaterial applications in air pollution remediation. Carbon Nanomaterials for Agri-Food and Environmental Applications; Elsevier: Cambridge. MA, USA, pp 133–153

    Chapter  Google Scholar 

  7. Mehmet Turp S (2019) Adsorption kinetics and isotherms of Ni (II) and Zn (II) heavy metals onto a natural adsorbent: expanded perlite. Desalin Water Treat 142:205–212. https://doi.org/10.5004/dwt.2019.23367

    Article  Google Scholar 

  8. Uddin M (2017) K, A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308:438–462. https://doi.org/10.1016/j.cej.2016.09.029

    Article  Google Scholar 

  9. Jiang S, Huang L, Nguyen TAH, Ok YS, Rudolph V, Yang H (2016) & Zhang, D, Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions. Chemosphere 142:64–71. https://doi.org/10.1016/j.chemosphere.2015.06.079

    Article  Google Scholar 

  10. Pavithra, K. G., Kumar, P. S., Jaikumar, V., Vardhan, K. H., & SundarRajan, P. (2020). Microalgae for biofuel production and removal of heavy metals: a review. Environ. Chem. Lett.. doi:https://doi.org/10.1007/s10311-020-01046-1.

  11. Ojedokun AT, Bello O (2016) S, Sequestering heavy metals from wastewater using cow dung. Water Resour Ind 13:7–13. https://doi.org/10.1016/j.wri.2016.02.002

    Article  Google Scholar 

  12. Vunain E, Mishra A, Mamba B (2016) Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: a review. Int J Biol Macromol 86:570–586. https://doi.org/10.1016/j.ijbiomac.2016.02.005

    Article  Google Scholar 

  13. Kariim I, Abdulkareem AS, Abubakre OK (2020) Development and characterization of MWCNTs from activated carbon as adsorbent for metronidazole and levofloxacin sorption from pharmaceutical wastewater: kinetics, isotherms and thermodynamic studies. Scientific African 7:00242

    Article  Google Scholar 

  14. Ekramul Mahmud, H. N., Huq, A. K. O., & Yahya, R. binti. ChemInform Abstract: The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review. ChemInform, 47(2013), (2016) https://doi.org/10.1002/chin.201613274.

  15. Renu, Agarwal, M., & Singh, K. Heavy metal removal from wastewater using various adsorbents: a review. J. Water Reuse Desalin., 7(4) (2016) 387–419. https://doi.org/10.2166/wrd.2016.104.

  16. Matheri, Anthony Njuguna et al. (2020) Influence of pyrolyzed sludge use as an adsorbent in removal of selected trace metals from wastewater treatment. Case Studies in Chemical and Environmental Engineering. 100018.

  17. Moradihamedani P (2021) Recent advances in dye removal from wastewater by membrane technology: a review. Polym Bull. https://doi.org/10.1007/s00289-021-03603-2

    Article  Google Scholar 

  18. Vardhan, K. H., Kumar, P. S., & Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq., 290, 111197.

  19. Çelebi, H., 2020. Recovery of detox tea wastes: usage as a lignocellulosic adsorbent in Cr6+ adsorption. Journal of Environmental Chemical Engineering, 8(5), p.104310. Available at: https://doi.org/10.1016/j.jece.2020. 104310.

  20. Vardhan KH, Panda RC, Saravanan A (2018) Removal of Zn(II) ions from aqueous solution using chemically modified Annona reticulata seeds; kinetics, isotherm and thermodynamics. Desalin Water Treat 122:66–77

    Article  Google Scholar 

  21. Samiey B, Cheng C-H, Wu J (2014) Organic-inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: a review. Materials 7(2):673–726. https://doi.org/10.3390/ma7020673

    Article  Google Scholar 

  22. Singha AS, Guleria A (2014) Chemical modification of cellulosic biopolymer and its use in removal of heavy metal ions from wastewater. Int J Biol Macromol 67:409–417. https://doi.org/10.1016/j.ijbiomac.2014.03.046

    Article  Google Scholar 

  23. Vijayaraghavan J, Sardhar Basha SJ, Jegan J (2013) A review on efficacious methods to decolorize reactive Azo Dye. J Urban Envir Eng 7(1):030–047. https://doi.org/10.4090/juee.2013.v7n1.030047

    Article  Google Scholar 

  24. Al Sadat Shafiof, M., Nezamzadeh-Ejhieh, A. (2020) A comprehensive study on the removal of Cd (II) from aqueous solution on a novel pentetic acid-clinoptilolite nanoparticles adsorbent: Experimental design, kinetic and thermodynamic aspects. Solid State Sci. 99:106071.

  25. Georgieva, Velyana G., Lenia Gonsalvesh, and Mariana P. Tavlieva. (2020) Thermodynamics and kinetics of the removal of nickel (II) ions from aqueous Solutions by biochar adsorbent made from agro-waste walnut shells. J. Mol. Liq. 312:112788.

  26. Venkatraman Y, Priya AK (2021) Removal of heavy metal ion concentrations from the wastewater using tobacco leaves coated with iron oxide nanoparticles. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-021-03202-8

    Article  Google Scholar 

  27. Babeker TMA, Chen Q (2021) Heavy Metal Removal from Wastewater by Adsorption with Hydrochar Derived from Biomass: Current Applications and Research Trends. Current Pollution Reports 7(1):54–71. https://doi.org/10.1007/s40726-020-00172-2

    Article  Google Scholar 

  28. Tripathi, A., & Rawat Ranjan, M. Heavy Metal Removal from Wastewater Using Low Cost Adsorbents. J. Biorem. Biodegrad., 06(06) (2015) https://doi.org/10.4172/2155-6199.1000315.

  29. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331. https://doi.org/10.1016/j.jhazmat.2011.10.016

    Article  Google Scholar 

  30. Zhang L, Zeng Y, Cheng Z (2016) Removal of heavy metal ions using chitosan and modified chitosan: A review. J Mol Liq 214:175–191. https://doi.org/10.1016/j.molliq.2015.12.013

    Article  Google Scholar 

  31. Karthik, V., Kumar, P. S., Harsha Vardhan, K., Saravanan, K., & Nithyakala, N. (2020). Adsorptive behaviour of surface tailored fungal biomass for the elimination of toxic dye from wastewater. Int. J. Environ. Anal. Chem., 1–16.

  32. Pal DB, Selvasembian R, Singh P (2021) Cadmium removal by composite copper oxide/ceria adsorbent from synthetic wastewater. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01534-6

    Article  Google Scholar 

  33. Naskar A et al (2020) Implication of greener biocomposite bead for decontamination of nickel(II): column dynamics study. J Polym Environ 28(7):1985–1997

    Article  Google Scholar 

  34. El-Sayed WN, Elwakeel KZ, Shahat A, Awual MR (2019) Investigation of novel nanomaterial for the removal of toxic substances from contaminated water. RSC Adv 9:14167–14175

    Article  Google Scholar 

  35. Çelebi, H., Gök, G. & Gök, O., 2020. Adsorption capability of brewed tea waste in waters containing toxic lead(II), cadmium (II), nickel (II), and zinc(II) heavy metal ions. Scientific Reports, 10(1). Available at: https://doi.org/10.1038/s41598-020-74553-4.

  36. Liu D, Zhou S (2021) Application of chemical coagulation to phosphorus removal from glyphosate wastewater. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-021-03164-x

    Article  Google Scholar 

  37. R. Gokulan, G. Ganesh Prabhu, A. Avinash, J. Jegan, Experimental and chemometric analysis of bioremediation of remazol dyes using biochar derived from green seaweeds, Desalin. Water Treat. 184 (2020) 340–353. https://doi.org/10.5004/dwt.2020.25339.

  38. Özcan, S., Çelebi, H. & Özcan, Z., 2018. Removal of heavy metals from simulated water by using eggshell powder. Desalin. Water Treat., 127, pp.75–82. Available at: 10.5004/ dwt.2018.22580.

  39. Harsha Vardhan, K., Kumar, P. S., & Panda, R. C. (2020). Adsorption of copper ions from polluted water using biochar derived from waste renewable resources: static and dynamic analysis. Int. J. Environ. Anal. Chem., 1–22.

  40. Abdelkader, S.E., El-Gendy, A.S. & El-Haggar, S., 2021. Removal of trivalent chromium from tannery wastewater using solid wastes. Innovative Infrastructure Solutions, 6(2). https://doi.org/10.1007/s41062-020-00414-8.

  41. Alalwan, Hayder A., Mohammed A. Kadhom, and Alaa H. Alminshid. (2020) Removal of Heavy Metals from Wastewater Using Agricultural Byproducts. J. Water Supply: Res. Technol.-AQUA. 69(2):99–112.

  42. Dey Chowdhury S, Bhunia P (2021) Simultaneous carbon and nitrogen removal from domestic wastewater using high rate vermifilter. Indian Journal of Microbiology 61(2):218–228. https://doi.org/10.1007/s12088-021-00936-4

    Article  Google Scholar 

  43. Gupta, Shweta, and Arinjay Kumar. (2019) Removal of nickel (II) from aqueous solution by biosorption on A. Barbadensis Miller waste leaves powder. Appl. Water Sci. 9(4).

  44. Ownby, M., Desrosiers, D.-A. & Vaneeckhaute, C., 2021. Phosphorus removal and recovery from wastewater via hybrid ion exchange nanotechnology: a study on sustainable regeneration chemistries. npj Clean Water, 4(1). 10.1038/ s41545–020–00097–9.

  45. Afroze S, Sen TK, Ang HM (2016) Adsorption removal of zinc (II) from aqueous phase by raw and base modified Eucalyptus sheathiana bark: kinetics, mechanism and equilibrium study. Process Saf Environ Prot 102:336–352. https://doi.org/10.1016/j.psep.2016.04.009

    Article  Google Scholar 

  46. Çelebi H, Gok O (2017) Use of AQIS for adsorption of Pb2+ form aqueous solution. Sigma J Eng & Nat Sci 35(1):69–75

    Google Scholar 

  47. Omar K., Ikram M., Hamza L., Mouna N., Abed M., Mohamed Lyamine C., (2020) Equilibrium, mechanism and mass transfer studies of nickel(II) adsorption by sewage sludge-derived activated carbon, Iran. J. Chem. Chem. Eng..

  48. Wang P, Shen T, Li X, Tang Y, Li Y (2020) Magnetic mesoporous calcium carbonate-based nanocomposites for the removal of toxic Pb (II) and Cd (II) ions from water. ACS Appl Nano Mater 3:1272–1281

    Article  Google Scholar 

  49. Alshammari MS (2020) Assessment of sewage water treatment using grinded bauxite rock as a robust and low-cost adsorption. J Chem 2020:1–5

    Google Scholar 

  50. Hachoumi, Imane et al. (2019) Pod Razor (Ensis Siliqua) Shell powder as cost-effective biomineral for removal of nickel(II), copper(II) and zinc(II) from artificially contaminated industrial wastewater. Sustainable Chem. Pharm. 12:100137.

  51. Khalil, T.E., Elhusseiny, A.F., El-dissouky, A., Ibrahim, N.M. (2020) Functionalized chitosan nanocomposites for removal of toxic Cr (VI) from aqueous solution. React. Funct. Polym. 146:104407.

  52. Gök, G. & Çelebi, H., 2019. Laboratory scale elimination of some heavy metals with hollow aluminosilicate spheres. International Journal of Ecosystems and Ecology Science (IJEES), 9(2), pp.305–312. Available at: https://doi.org/10.31407/ijees9210.

  53. Caglar Gencosman, B. & Eker Sanli, G., (2021) Prediction of polycyclic aromatic hydrocarbons (PAHs) removal from wastewater treatment sludge using machine learning methods. Water, Air, & Soil Pollution, 232(3). https://doi.org/10.1007/s11270-021-05049-8.

  54. Wu, H., Wei, W., Xu, C., Meng, Y., Bai, W., Yang, W., Lin, A. (2020) Polyethylene glycol-stabilized nano zero-valent iron supported by biochar for highly efficient removal of Cr (VI). Ecotoxicol. Environ. Saf. 188:109902.

  55. Almasi A, Navazeshkha F, Mousavi SA (2017) Biosorption of lead from aqueous solution onto Nasturtium officinale: performance and modeling Biosorption of lead from aqueous solution onto Nasturtium officinale: performance and modeling. Desalin Water Treat 65:443–450. https://doi.org/10.5004/dwt.2017.20308

    Article  Google Scholar 

  56. Chakraborty, Rupa et al. (2020) Adsorption of Heavy Metal Ions by Various Low-Cost Adsorbents: a Review. Int. J. Environ. Anal. Chem. 1–38.

  57. Inyang MI, Gao B, Yao Y, Xue Y, Zimmerman A, Mosa A, Cao X (2015) A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit Rev Environ Sci Technol 46(4):406–433. https://doi.org/10.1080/10643389.2015.1096880

    Article  Google Scholar 

  58. Geremew, B. A review on elimination of heavy metals from wastewater using agricultural wastes as adsorbents. Sci. J. Anal. Chem, 5(5) (2017) 72. https://doi.org/10.11648/j.sjac.20170505. 12.

  59. Bentahar S, Lacherai A, Dbik A, El-Messaoudi. N, El-Khomri. M, Equilibrium, Isotherm, kinetic and thermodynamic studies of removal of crystal violet by adsorption onto a natural clay. Iran. J. Energy Environ.. (2015) https://doi.org/10.5829/idosi.ijee.2015.06.04.03.

  60. Bao, W., Zou, H., Gan, S., Xu, X., Ji, G., & Zheng, K. Adsorption of heavy metal ions from aqueous solutions by zeolite based on oil shale ash: kinetic and equilibrium studies.

  61. Chem. Res. Chin. Univ., 29(1) (2013) 126–131. https://doi.org/10.1007/s40242-013-2139-2.

  62. A. F. T. Multiple adsorption of heavy metal ions in aqueous solution using activated carbon from nigerian bamboo. I. J.Resear. Eng. Technol, 05(01) (2016) 164–169. https://doi.org/10.15623/ijret. 2016.0501033.

  63. Wilson K, Yang H, Seo CW, Marshall WE (2006) Select metal adsorption by activated carbon made from peanut shells. Bioresour Technol 97(18):2266–2270. https://doi.org/10.1016/j.biortech.2005.10.043

    Article  Google Scholar 

  64. Sprynskyy M, Buszewski B, Terzyk AP, Namieśnik J (2006) Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J Colloid Interface Sci 304(1):21–28. https://doi.org/10.1016/j.jcis.2006.07.068

    Article  Google Scholar 

  65. Aman T, Kazi AA, Sabri MU, Bano Q (2008) Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent. Colloid Surface B 63(1):116–121. https://doi.org/10.1016/j.colsurfb.2007.11.013

    Article  Google Scholar 

  66. Kaczala F, Marques M, Hogland W (2009) Lead and vanadium removal from a real industrial wastewater by gravitational settling/sedimentation and sorption onto Pinus sylvestris sawdust. Bioresour Technol 100(1):235–243. https://doi.org/10.1016/j.biortech.2008.05.055

    Article  Google Scholar 

  67. Amuda OS, Adelowo FE, Ologunde MO (2009) Kinetics and equilibrium studies of adsorption of chromium(VI) ion from industrial wastewater using Chrysophyllum albidum (Sapotaceae) seed shells. Colloid Surface B 68(2):184–192. https://doi.org/10.1016/j.colsurfb.2008.10.002

    Article  Google Scholar 

  68. Mata YN, Blázquez ML, Ballester A, González F, Muñoz JA (2009) Sugar-beet pulp pectin gels as biosorbent for heavy metals: preparation and determination of biosorption and desorption characteristics. Chem Eng J 150(2–3):289–301. https://doi.org/10.1016/j.cej.2009.01.001

    Article  Google Scholar 

  69. Schiewer S, Patil SB (2008) Modeling the effect of pH on biosorption of heavy metals by citrus peels. J Hazard Mater 157(1):8–17. https://doi.org/10.1016/j.jhazmat.2007.12.076

    Article  Google Scholar 

  70. AG, E.-S., NA, B., & SE, G. Adsorption of heavy metal ions from aqueous solutions onto rice husk ash low cost adsorbent. J. Enviro. Anal. Toxi. 08(01) (2018) https://doi.org/10.4172/2161-0525.1000543

  71. Bhattacharya AK, Mandal SN, Das SK (2006) Adsorption of Zn(II) from aqueous solution by using different adsorbents. Chem Eng J 123(1–2):43–51. https://doi.org/10.1016/j.cej.2006.06.012

    Article  Google Scholar 

  72. Saeed A, Iqbal M (2003) Bioremoval of cadmium from aqueous solution by black gram husk (Cicer arientinum). Water Res 37(14):3472–3480. https://doi.org/10.1016/s0043-1354(03)00175-1

    Article  Google Scholar 

  73. Orhan, Y., & Büyükgüngör, H. The Removal of Heavy Metals by Using Agricultural Wastes.

  74. Water Sci (1993) Technol 28(2):247–255. https://doi.org/10.2166/wst.1993.0114

    Article  Google Scholar 

  75. Saeed A, Akhter M, Iqbal M (2005) Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Sep Purif Technol 45(1):25–31. https://doi.org/10.1016/j.seppur.2005.02.004

    Article  Google Scholar 

  76. King, P., Srinivas, P., Kumar, Y., & Prasad, V. Sorption of copper(II) ion from aqueous solution by Tectona grandis l.f. (teak leaves powder). J. Hazard. Mater., 136(3) (2006) 560–566. 10.1016/ j.jhazmat.2005.12.032.

  77. Karunasagar D, Balarama Krishna MV, Rao SV, Arunachalam J (2005) Removal and preconcentration of inorganic and methyl mercury from aqueous media using a sorbent prepared from the plant Coriandrum sativum. J Hazard Mater 118(1–3):133–139. https://doi.org/10.1016/j.jhazmat.2004.10.021

    Article  Google Scholar 

  78. M. A. K. M. H., . W. S. W. N., . H. Z., & . S. C. I. Batch study of liquid-phase adsorption of lead ions using lalang (Imperata cylindrica) leaf powder. J. Biol. Sci., 7(2) (2007) 222–230. 10.3923 /jbs.2007.222.230.

  79. Johnson, P. ., Watson, M. ., Brown, J., & Jefcoat, I. . Peanut hull pellets as a single use sorbent for the capture of Cu(II) from wastewater. Waste Manage., 22(5) (2002) 471–480. 10.1016 /s0956–053x(01)00036–8.

  80. Santoso, B. Recovery of starch from Sago Pith waste and waste water treatment. Sago Palm, (2018) 261–269. https://doi.org/10.1007/978-981-10-5269-9_19.

  81. Lu, X. Comment on “Thermodynamic and isotherm studies of the biosorption of Cu(II), Pb(II), and Zn(II) by leaves of saltbush (Atriplex canescens). J. Chem. Thermo., 40(4) (2008) 739–740. 10.1016 /j.jct.2007.11.014.

  82. Sawalha MF, Peralta-Videa JR, Romero-González J, Gardea-Torresdey JL (2006) Biosorption of Cd(II), Cr(III), and Cr(VI) by saltbush (Atriplex canescens) biomass: Thermodynamic and isotherm studies. J Colloid Interface Sci 300(1):100–104. https://doi.org/10.1016/j.jcis.2006.03.029

    Article  Google Scholar 

  83. Ho YS, Wang CC (2004) Pseudo-isotherms for the sorption of cadmium ion onto tree fern. Process Biochem 39(6):761–765. https://doi.org/10.1016/s0032-9592(03)00184-5

    Article  Google Scholar 

  84. Ho Y-S, Chiu W-T, Hsu C-S, Huang C-T (2004) Sorption of lead ions from aqueous solution using tree fern as a sorbent. Hydrometallurgy 73(1–2):55–61. https://doi.org/10.1016/j.hydromet.2003.07.008

    Article  Google Scholar 

  85. Ho Y-S (2004) Erratum to “Removal of copper ions from aqueous solution by tree fern.” Water Res 38(20):4536–4537. https://doi.org/10.1016/j.watres.2004.06.004

    Article  Google Scholar 

  86. Villaescusa, I., Fiol, N., Martı́nez, M., Miralles, N., Poch, J., & Serarols, J. Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Res., 38(4) (2004) 992–1002. https://doi.org/10.1016/j.watres.2003.10.040.

  87. Bansode R, Losso J, Marshall W, Rao R, Portier R (2003) Adsorption of metal ions by pecan shell-based granular activated carbons. Bioresour Technol 89(2):115–119. https://doi.org/10.1016/s0960-8524(03)00064-6

    Article  Google Scholar 

  88. Kobya M, Demirbas E, Senturk E, Ince M (2006) Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Fuel Abstr Curr Titles 47(4):247. https://doi.org/10.1016/s0140-6701(06)81603-6

    Article  Google Scholar 

  89. Sekar M, Sakthi V, Rengaraj S (2004) Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. J Colloid Interface Sci 279(2):307–313. https://doi.org/10.1016/j.jcis.2004.06.042

    Article  Google Scholar 

  90. Ozer A (2007) Removal of Pb(II) ions from aqueous solutions by sulphuric acid-treated wheat bran. J Hazard Mater 141(3):753–761. https://doi.org/10.1016/j.jhazmat.2006.07.040

    Article  Google Scholar 

  91. S. G., . B. Y., . K. A., & . G. A. Heavy metals removal in aqueous solution by activated carbons prepared from coconut shell and seed shell of the palm tree. J. Appl. Sci., 6(13) (2006) 2789–2793. https://doi.org/10.3923/jas.2006.2789.2793.

  92. Kalavathy MH, Karthikeyan T, Rajgopal S, Miranda LR (2005) Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust. J Colloid Interface Sci 292(2):354–362. https://doi.org/10.1016/j.jcis.2005.05.087

    Article  Google Scholar 

  93. Djakba R, Harouna M, Gaineumbo S, Fonga N, Baïboussa G, Loura B (2017) Adsorption of cadmium and copper ions in aqueous solution by using activated carbon resulting from hulls of neem. Chem Sci Int J 18(4):1–10. https://doi.org/10.9734/csji/2017/32208

    Article  Google Scholar 

  94. Nasiruddin Khan M, Farooq Wahab M (2007) Characterization of chemically modified corncobs and its application in the removal of metal ions from aqueous solution. J Hazard Mater 141(1):237–244. https://doi.org/10.1016/j.jhazmat.2006.06.119

    Article  Google Scholar 

  95. Aydın H, Bulut Y, Yerlikaya Ç (2008) Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. J Environ Manage 87(1):37–45. https://doi.org/10.1016/j.jenvman.2007.01.005

    Article  Google Scholar 

  96. O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99(15):6709–6724. https://doi.org/10.1016/j.biortech.2008.01.036

    Article  Google Scholar 

  97. Dang VBH, Doan HD, Dang-Vu T, Lohi A (2009) Equilibrium and kinetics of biosorption of cadmium(II) and copper(II) ions by wheat straw. Bioresour Technol 100(1):211–219. https://doi.org/10.1016/j.biortech.2008.05.031

    Article  Google Scholar 

  98. Zewail TM, El-Garf SAM (2010) Preparation of agriculture residue based adsorbents for heavy metal removal. Desalin Water Treat 22(1–3):363–370. https://doi.org/10.5004/dwt.2010.1245

    Article  Google Scholar 

  99. Hawari AH, Mulligan CN (2006) Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass. Bioresour Technol 97(4):692–700. https://doi.org/10.1016/j.biortech2005.03.033

    Article  Google Scholar 

  100. Ho Y, McKay G (1999) The sorption of lead(II) ions on peat. Water Resear 33(2):578–584. https://doi.org/10.1016/s0043-1354(98)00207-3

    Article  Google Scholar 

  101. Brown P, Atly Jefcoat I, Parrish D, Gill S, Graham E (2000) Evaluation of the adsorptive capacity of peanut hull pellets for heavy metals in solution. Adv Environ Res 4(1):19–29. https://doi.org/10.1016/s1093-0191(00)00004-6

    Article  Google Scholar 

  102. Reddad Z, Gerente C, Andres Y, Le Cloirec P (2002) Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environ Sci Technol 36(9):2067–2073. https://doi.org/10.1021/es0102989

    Article  Google Scholar 

  103. Fiol N, Villaescusa I, Martínez M, Miralles N, Poch J, Serarols J (2006) Sorption of Pb(II), Ni(II), Cu(II) and Cd(II) from aqueous solution by olive stone waste. Sep Purif Technol 50(1):132–140. https://doi.org/10.1016/j.seppur.2005.11.016

    Article  Google Scholar 

  104. Rao M, Parwate AV, Bhole AG (2002) Removal of Cr6+ and Ni2+ from aqueous solution using bagasse and fly ash. Waste Manage 22(7):821–830. https://doi.org/10.1016/s0956-053x(02)00011-9

    Article  Google Scholar 

  105. Janyasuthiwong S, Phiri SM, Kijjanapanich P, Rene ER, Esposito G, Lens PNL (2015) Copper, lead and zinc removal from metal-contaminated wastewater by adsorption onto agricultural wastes. Environ Technol 36(24):3071–3083. https://doi.org/10.1080/09593330.2015.1053537

    Article  Google Scholar 

  106. Agouborde L, Navia R (2009) Heavy metals retention capacity of a non-conventional sorbent developed from a mixture of industrial and agricultural wastes. J Hazard Mater 167(1–3):536–544. https://doi.org/10.1016/j.jhazmat.2009.01.027

    Article  Google Scholar 

  107. Sciban M, Klasnja M, Skrbic B (2006) Modified softwood sawdust as adsorbent of heavy metal ions from water. J Hazard Mater 136(2):266–271. https://doi.org/10.1016/j.jhazmat.2005.12.009

    Article  Google Scholar 

  108. Sciban M, Klasnja M, Skrbic B (2006) Modified hardwood sawdust as adsorbent of heavy metal ions from water. Wood Sci Technol 40(3):217–227. https://doi.org/10.1007/s00226-005-0061-6

    Article  Google Scholar 

  109. Demcak S, Balintova M, Hurakova M, Frontasyeva MV, Zinicovscaia I, Yushin N (2017) Utilization of poplar wood sawdust for heavy metals removal from model solutions. Nova Biotechnol Chim 16(1):26–31. https://doi.org/10.1515/nbec-2017-0004

    Article  Google Scholar 

  110. Shukla SR, Pai RS (2005) Adsorption of Cu(II), Ni(II) and Zn(II) on dye loaded groundnut shells and sawdust. Sep Purif Technol 43(1):1–8. https://doi.org/10.1016/j.seppur.2004.09.003

    Article  Google Scholar 

  111. Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride MB, Hay AG (2011) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol 102(19):8877–8884. https://doi.org/10.1016/j.biortech.2011.06.078

    Article  Google Scholar 

  112. A. F. T. Multiple adsorption of heavy metal ions in aqueous solution using activated carbon from nigerian bamboo. I. J. Resear. Eng. Technol. 05(01) (2016) 164–169. https://doi.org/10.15623/ijret. 2016.0501033.

  113. Ademiluyi, F. T., & David-West, E. O. Effect of chemical activation on the adsorption of heavy metals using activated carbons from waste materials. ISRN Chem. Eng., (2012) 1–5. 10.5402/ 2012/674209.

  114. Vázquez G, Antorrena G, González J, Doval MD (1994) Adsorption of heavy metal ions by chemically modified Pinus pinaster bark. Bioresour Technol 48(3):251–255. https://doi.org/10.1016/0960-8524(94)90154-6

    Article  Google Scholar 

  115. Seki, K., Saito, N., & Aoyama, M. Removal of heavy metal ions from solutions by coniferous barks.Wood Sci. Technol., 31(6) (1997) 441–447. https://doi.org/10.1007/s002260050050.

  116. Ahmaruzzaman, M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv. Colloid Interface Sci., 166(1–2) (2011) 36–59. 10.1016 /j.cis.2011.04.005.

  117. Ademiluyi FT (2016) Multiple adsorption of heavy metal ions in aqueous solution using activated carbon from nigerian bamboo. I J Resear Eng Technol 05(01):164–169

    Google Scholar 

  118. Kaushal A, Singh SK (2016) Removal of Zn (II) from aqueous solutions using agro-based adsorbents. Imp J Interdiscip Res 2(6):1215–1218

    Google Scholar 

  119. Wen, T., Wang, J., Li, X., Huang, S., Chen, Z., Wang, S., … Wang, X.. Production of a generic magnetic Fe3O4 nanoparticles decorated tea waste composites for highly efficient sorption of Cu(II) and Zn(II). J. Environ. Chem. Eng., 5(4) (2017) 3656–3666. https://doi.org/10.1016/j.jece.2017.07.022.

  120. Qi BC, Aldrich C (2008) Biosorption of heavy metals from aqueous solutions with tobacco dust. Bioresour Technol 99(13):5595–5601. https://doi.org/10.1016/j.biortech.2007.10.042

    Article  Google Scholar 

  121. Kumar, Y. P., King, P., & Prasad, V. S. R. K. Zinc biosorption on Tectona grandis L.f. leaves biomass: Equilibrium and kinetic studies. Chem Eng J, 124(1–3) (2006) 63–70. https://doi.org/10.1016/j.cej. 2006.07.010.

  122. Iqbal M, Saeed A, Kalim I (2009) Characterization of adsorptive capacity and investigation of mechanism of Cu2+, Ni2+and Zn2+adsorption on mango peel waste from constituted metal solution and genuine electroplating effluent. Sep Sci Technol 44(15):3770–3791. https://doi.org/10.1080/01496390903182305

    Article  Google Scholar 

  123. Ekpete, O. A., Kpee, F., Amadi, J. C., & Rotimi, R. B. Adsorption of chromium(VI) and zinc(II) ions on the skin of orange peels (Citrus sinensis). J. Nepal Chem. Soc., 26 (1970) 31–39. 10.3126 /jncs.v26i0.3628.

  124. Annadurai G, Juang RS, Lee DJ (2003) Adsorption of heavy metals from water using banana and orange peels. Water Sci Technol 47(1):185–190. https://doi.org/10.2166/wst.2003.0049

    Article  Google Scholar 

  125. Shukla SR, Pai RS (2005) Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres. Bioresour Technol 96(13):1430–1438. https://doi.org/10.1016/j.biortech.2004.12.010

    Article  Google Scholar 

  126. Balköse D, Baltacioǧlu H (2007) Adsorption of heavy metal cations from aqueous solutions by wool fibers. J Chem Technol Biotechnol 54(4):393–397. https://doi.org/10.1002/jctb.280540414

    Article  Google Scholar 

  127. Viraraghavan T, Dronamraju MM (1993) Removal of copper, nickel and zinc from wastewater by adsorption using feat. J Environ Sci Heal A 28(6):1261–1276. https://doi.org/10.1080/10934529309375941

    Article  Google Scholar 

  128. Gosset T, Trancart J-L, Thévenot DR (1986) Batch metal removal by peat. Kinetics and thermodynamics Water Res 20(1):21–26. https://doi.org/10.1016/0043-1354(86)90209-5

    Article  Google Scholar 

  129. McKay G, Porter J (1997) F, Equilibrium Parameters for the sorption of copper, cadmium and zinc ions onto peat. J Chem Technol Biotechnol 69(3):309–320. https://doi.org/10.1002/(sici)1097-4660(199707)69:3%3c309::aid-jctb724%3e3.0.co;2-w

    Article  Google Scholar 

  130. Pehlivan, E., cetin, S., & yanik, B. Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash. J. Hazard. Mater., 135(1–3) (2006) 193–199. 10.1016 /j.jhazmat.2005.11.049.

  131. Marshall WE, Johns MM (1996) Agricultural by-products as metal adsorbents: sorption properties and resistance to mechanical abrasion. J Chem Technol Biotechnol 66(2):192–198. https://doi.org/10.1002/(sici)1097-4660(199606)66:2%3c192::aid-jctb489%3e3.0.co;2-c

    Article  Google Scholar 

  132. Gupta VK, Sharma S (2003) Removal of zinc from aqueous solutions using bagasse fly ash − a low cost adsorbent. Ind Eng Chem Res 42(25):6619–6624. https://doi.org/10.1021/ie0303146

    Article  Google Scholar 

  133. Mohan D, Singh KP (2002) Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Res 36(9):2304–2318. https://doi.org/10.1016/s0043-1354(01)00447-x

    Article  Google Scholar 

  134. Kweon D-K, Choi J-K, Kim E-K, Lim S-T (2001) Adsorption of divalent metal ions by succinylated and oxidized corn starches. Carbohydr Polym 46(2):171–177. https://doi.org/10.1016/s0144-8617(00)00300-3

    Article  Google Scholar 

  135. Hossain MA, Ngo HH, Guo WS, Nghiem LD, Hai FI, Vigneswaran S, Nguyen TV (2014) Competitive adsorption of metals on cabbage waste from multi-metal solutions. Bioresour Technol 160:79–88. https://doi.org/10.1016/j.biortech.2013.12.107

    Article  Google Scholar 

  136. Nasernejad B, Zadeh TE, Pour BB, Bygi ME, Zamani A (2005) Camparison for biosorption modeling of heavy metals (Cr (III), Cu (II), Zn (II)) adsorption from wastewater by carrot residues. Process Biochem 40(3–4):1319–1322. https://doi.org/10.1016/j.procbio.2004.06.010

    Article  Google Scholar 

  137. Boonamnuayvitaya V, Chaiya C, Tanthapanichakoon W, Jarudilokkul S (2004) Removal of heavy metals by adsorbent prepared from pyrolyzed coffee residues and clay. Sep Purif Technol 35(1):11–22. https://doi.org/10.1016/s1383-5866(03)00110-2

    Article  Google Scholar 

  138. Gharaibeh, S. H., Abu-el -sha’r, W. Y., & Al-Kofahi, M. M. Removal of selected heavy metals from aqueous solutions using processed solid residue of olive mill products. Water Res., 32(2) (1998) 498–502. https://doi.org/10.1016/s0043-1354(97)00221-2.

  139. Bogusz A, Oleszczuk P, Dobrowolski R (2015) Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water. Bioresour Technol 196:540–549. https://doi.org/10.1016/j.biortech.2015.08.006

    Article  Google Scholar 

  140. Sun G, Shi W (1998) Sunflower Stalks as Adsorbents for the Removal of Metal Ions from Wastewater. Ind Eng Chem Res 37(4):1324–1328. https://doi.org/10.1021/ie970468j

    Article  Google Scholar 

  141. Park J-H, Ok YS, Kim S-H, Cho J-S, Heo J-S, Delaune RD, Seo D-C (2016) Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 142:77–83. https://doi.org/10.1016/j.chemosphere.2015.05.093

    Article  Google Scholar 

  142. Horsfall M (2003) Sorption of cadmium(II) and zinc(II) ions from aqueous solutions by cassava waste biomass (Manihot sculenta Cranz). Water Res 37(20):4913–4923. https://doi.org/10.1016/j.watres.2003.08.020

    Article  Google Scholar 

  143. Abia AA, Horsfall M, Didi O (2003) Thunmodified cassava waste for the removal of Cd, Cu and Zn ions from aqueous solution. Bioresour Technol 90(3):345–348. https://doi.org/10.1016/s0960-8524(03)00145-7

    Article  Google Scholar 

  144. Horsfall, M., Abia, A. A., & Spiff, A. I. Kinetic studies on the adsorption of Cd2+, Cu2+ and Zn2+ ions from aqueous solutions by cassava (Manihot sculenta Cranz) tuber bark waste.

  145. Bioresour. Technol., 97(2) (2006) 283–291. https://doi.org/10.1016/j.biortech.2005.02.016.

  146. Vaughan T, Seo CW, Marshall WE (2001) Removal of selected metal ions from aqueous solution using modified corncobs. Bioresour Technol 78(2):133–139. https://doi.org/10.1016/s0960-8524(01)00007-4

    Article  Google Scholar 

  147. Alslaibi TM, Abustan I, Ahmad MA, & Foul AA, Application of response surface methodology (RSM) for optimization of Cu(II), Cd(II), Ni(II), Pb(II), Fe(II), and Zn(II) removal from aqueous solution using microwaved olive stone activated carbon, J. Chem. Technol. Biotechnol., 88(12) (2013) 2141–2151. 10.1002 /jctb.4073.

  148. Xu JP, Huang Z, Gao YL (2013) The optimization of Pb(II), Cu(II), Zn(II) and Cd(II) ions removal by micro-electrolysis using response surface methodology. Adv Mat Res 800:537–545. https://doi.org/10.4028/www.scientific.net/amr.800.537

    Article  Google Scholar 

  149. Budinova TK, Petrov NV, Minkova VN, Gergova KM (1994) Removal of metal ions from aqueous solution by activated carbons obtained from different raw materials. J Chem Technol Biotechnol 60(2):177–182. https://doi.org/10.1002/jctb.280600210

    Article  Google Scholar 

  150. Ferro-García MA, Rivera-Utrilla J, Rodríguez-Gordillo J, Bautista-Toledo I (1988) Adsorption of zinc, cadmium, and copper on activated carbons obtained from agricultural by-products. Carbon 26(3):363–373. https://doi.org/10.1016/0008-6223(88)90228-x

    Article  Google Scholar 

  151. El-Shafey EI, Cox M, Pichugin AA, Appleton Q (2002) Application of a carbon sorbent for the removal of cadmium and other heavy metal ions from aqueous solution. J Chem Technol Biotechnol 77(4):429. https://doi.org/10.1002/jctb.577.abs

    Article  Google Scholar 

  152. Munaf E, Zein R (1997) The use of rice husk for removal of toxic metals from waste water. Environ Technol 18(3):359–362. https://doi.org/10.1080/09593331808616549

    Article  Google Scholar 

  153. Zwain H, Dahlan I (2012) Characterization of RHA/PFA/CFA adsorbent and its equilibrium and kinetic studies for Zn2+ removal. Caspian J App Sci Resear 1:23–34

    Google Scholar 

  154. Xu X, Cao X, Zhao L (2013) Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars. Chemosphere 92(8):955–961. https://doi.org/10.1016/j.chemosphere.2013.03.009

    Article  Google Scholar 

  155. Oliveira WE, Franca AS, Oliveira LS, Rocha SD (2008) Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions. J Hazard Mater 152(3):1073–1081. https://doi.org/10.1016/j.jhazmat.2007.07.085

    Article  Google Scholar 

  156. Saeed A, Iqbal M, Akhtar MW (2005) Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). J Hazard Mater 117(1):65–73. https://doi.org/10.1016/j.jhazmat.2004.09.008

    Article  Google Scholar 

  157. Igwe J, Abia AA (2007) Adsorption isotherm studies of Cd (II), Pb (II) and Zn (II) ions bioremediation from aqueous solution using unmodified and EDTA-modified maize cob. Ecletica Quim 32(1):33–42. https://doi.org/10.1590/s0100-46702007000100005

    Article  Google Scholar 

  158. Abdel Salam OE, Reiad NA, ElShafei MM (2011) A study of the removal characteristics of heavy metals from wastewater by low-cost adsorbents. J Adv Res 2(4):297–303. https://doi.org/10.1016/j.jare.2011.01.008

    Article  Google Scholar 

  159. Bansode R, Losso J, Marshall W, Rao R, Portier R (2003) Adsorption of metal ions by pecan shell-based granular activated carbons. Bioresour Technol. 89(2):115–119. https://doi.org/10.1016/s0960-8524(03)00064-6

    Article  Google Scholar 

  160. Ratan Jatinder Kumar, Kaur Manjeet, Adiraju Bharadwaj (2018) synthesis of activated carbon from agricultural waste using a simple method: characterization, parametric and isotherms study. Mater Today: Proc 5(2):3334–3345

    Google Scholar 

  161. Jiang D et al (2019) Removal of the heavy metal ion nickel (II) via an adsorption method using flower globular magnesium hydroxide. J Hazard Mater 373:131–140

    Article  Google Scholar 

  162. Matheri AN et al (2020) Influence of pyrolyzed sludge use as an adsorbent in removal of selected trace metals from wastewater treatment. Case Stud Chem Environ Eng 100018

  163. Srivastava S, Agrawal SB, Mondal MK (2015) A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ Sci Pollut Res 22(20):15386–15415. https://doi.org/10.1007/s11356-015-5278-9

    Article  Google Scholar 

  164. Hakan C (2021) Use of bioballs as an adsorbent for the removal of copper. J Chem Soc Pak 43(2):114–123

    Google Scholar 

  165. Devi P, Saroha AK (2016) Improvement in performance of sludge-based adsorbents by controlling key parameters by activation/modification: a critical review. Crit Rev Environ Sci Technol 46(21–22):1704–1743

    Article  Google Scholar 

  166. Devi P, Saroha AK (2017) Utilization of sludge based adsorbents for the removal of various pollutants: a review. Sci Total Environ 578:16–33

    Article  Google Scholar 

  167. Smith KM et al (2009) Sewage sludge-based adsorbents: a review of their production, properties and use in water treatment applications. Water Res 43(10):2569–2594

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vijayaraghavan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, D.Z., Vijayaraghavan, J. & Thivya, J. A comprehensive review on zinc(II) sequestration from wastewater using various natural/modified low-cost agro-waste sorbents. Biomass Conv. Bioref. 13, 5469–5499 (2023). https://doi.org/10.1007/s13399-021-01822-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01822-1

Keywords

Navigation