Skip to main content

Advertisement

Log in

Thermochemical processing of digestate from biogas plant for recycling dairy manure and biomass

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This paper describes the experimental results of the thermal decomposition of the digestate obtained as a result of anaerobic digestion of dairy manure and dry biomass of Amaranthus retroflexus L. The high yield of Amaranth green mass in the main soil and climate zones of Russia is its advantage over other crops. The ratio of amaranth stems, amaranth leaves, and dairy manure for volatile solids was equal to 1:5:16. Amaranthus retroflexus L. is a weed; therefore, a thermochemical digestate processing is proposed to avoid the seed integrity. The higher heating value (HHV) of digestate was 18.6 MJ/kg. The HHV of the char residue was 19 MJ/kg. In the inorganic part of the digestate sample, the oxides CaO, SiO2, and K2O are prevailed. Thermal decomposition of digestate was studied in the temperature range 25–1000 °C in an inert atmosphere using thermogravimetric and differential scanning calorimetry (TG-DSC) at the heating rates of 5, 10, and 20 °C/min. Char residue mass was ranged from 39.8 to 41.08%. Consequently, the rest of the organic matter components pass into the pyrolysis gas and liquid phase. Additionally, studies of the digestate pyrolysis process were carried out in a laboratory setup (in an inert atmosphere) at the heating rate of 10 °C/min and the temperature of 550 °C. As a result, 31% of pyrolysis liquid, 28% of gas, and 41% of char residue were obtained. The HHV of the char residue increased on 4.8% compared with the initial value of digestate. The main components of the pyrolysis liquid are acetic acid (71.44%) and propionic acid (6.12%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Font-Palma C (2019) Methods for the treatment of cattle manure—a review. C J Carbon Res:1–20. https://doi.org/10.3390/c5020027

  2. Wu X, Dong C, Yao W, Zhu J (2011) Anaerobic digestion of dairy manure influenced by the waste milk from milking operations. J Dairy Sci 94:3778–3786. https://doi.org/10.3168/jds.2010-4129

    Article  Google Scholar 

  3. Atandi E, Rahman S (2012) Prospect of anaerobic co-digestion of dairy manure: a review. Environ Technol Rev 1(1):127–135. https://doi.org/10.1080/09593330.2012.698654

    Article  Google Scholar 

  4. Kim E, Lee S, Jo H, Jeong J, Mulbry W, Rahman S, Ahn H (2018) Solid-state anaerobic digestion of dairy manure from a sawdust-bedded pack barn: moisture responses. Energies 11:484. https://doi.org/10.3390/en11030484

    Article  Google Scholar 

  5. Chiumenti A, Borso F, Limina S (2018) Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant: efficiency and comparison with wet fermentation. Waste Manag 71:704–710. https://doi.org/10.1016/j.wasman.2017.03.046

    Article  Google Scholar 

  6. Wang F, Pei M, Qiu L, Yao Y, Zhang C, Qiang H (2019) Performance of anaerobic digestion of chicken manure under gradually elevated organic loading rates. Int J Environ Res Public Health 16:2239. https://doi.org/10.3390/ijerph16122239

    Article  Google Scholar 

  7. Wei Y, Honga J, Ji W (2018) Thermal characterization and pyrolysis of digestate for phenol production. Fuel 232:141–146. https://doi.org/10.1016/j.fuel.2018.05.134

    Article  Google Scholar 

  8. Maurer C, Müller J (2019) Drying Characteristics of biogas digestate in a hybrid waste-heat/solar dryer. Energies 12:1294. https://doi.org/10.3390/en12071294

    Article  Google Scholar 

  9. Ehmann A, Thumm U, Lewandowski I (2018) Fertilizing potential of separated biogas digestates in annual and perennial biomass production systems. Front Sustain Food Syst. https://doi.org/10.3389/fsufs.2018.00012

  10. Törnwall E, Pettersson H, Thorin E, Schwede S (2017) Post-treatment of biogas digestate—an evaluation of ammonium recovery, energy use and sanitation. Energy Procedia 142:957–963. https://doi.org/10.1016/j.egypro.2017.12.153

    Article  Google Scholar 

  11. Govasmark E, Stäb J, Holen B, Hoornstra D, Nesbakk T, Salkinoja-Salonend M (2011) Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use. Waste Manag 31(12):2577–2583. https://doi.org/10.1016/j.wasman.2011.07.025

    Article  Google Scholar 

  12. Daniel-Gromke J, Liebetrau J, Denysenko V, Krebs C (2015) Digestion of bio-waste-GHG emissions and mitigation potential. Energy Sustain Soc 5(1). https://doi.org/10.1186/s13705-014-0032-6

  13. Monlau F, Ficara E, Barakat A, Sambusiti C, Aboulkas A, Carrere H (2015) New opportunities for agricultural digestate valorization: current situation and perspectives. Energy Environ Sci 8:2600–2661. https://doi.org/10.1039/C5EE01633A

    Article  Google Scholar 

  14. Feng Q, Lin Y (2017) Integrated anaerobic digestion and pyrolysis processes for higher bioenergy recovery from lignocellulosic biomass: a brief review. Renew Sust Energ Rev 77:1272–1287. https://doi.org/10.1016/j.rser.2017.03.022

    Article  Google Scholar 

  15. Bartocci P, Tschentscher R, Stensrod RE, Barbanera M, Fantozzi F (2019) Kinetic analysis of digestate slow pyrolysis with the application of the master-plots method and independent parallel reactions scheme. Molecules 24:1657. https://doi.org/10.3390/molecules24091657

    Article  Google Scholar 

  16. Opatokun SA, Strezov V, Kan T (2015) Product based evaluation of pyrolysis of food waste and its digestate. Energy 92:349–354. https://doi.org/10.1016/j.energy.2015.02.098

    Article  Google Scholar 

  17. Monlau F, Sambusiti C, Antoniou N, Barakat A, Zabaniotou A (2015) A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process. Appl Energy 148:32–38. https://doi.org/10.1016/j.apenergy.2015.03.024

    Article  Google Scholar 

  18. Li Y, Zhang R, He Y, Zhang C, Liu X, Chen C, Liu G (2014) Anaerobic co-digestion of chicken manure and corn stover in batch and continuously stirred tank reactor (CSTR). Bioresour Technol 156:342–347. https://doi.org/10.1016/j.biortech.2014.01.054

    Article  Google Scholar 

  19. Moller K, Muller T (2012) Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng Life Sci 12(3):242–257. https://doi.org/10.1007/s11157-020-09531-3

    Article  Google Scholar 

  20. González-Arias J, Fernández C, Rosas JG, Bernal MP, Clemente R, Sánchez E, Gómez X (2019) Integrating anaerobic digestion of pig slurry and thermal valorisation of biomass. Waste Biomass Valor 11:6125–6137. https://doi.org/10.1007/s12649-019-00873-w

    Article  Google Scholar 

  21. Osman AI (2020) Mass spectrometry study of lignocellulosic biomass combustion and pyrolysis with NOx removal. Renew Energy 146:484–496. https://doi.org/10.1016/j.renene.2019.06.155

    Article  Google Scholar 

  22. Sørmo E, Silvani L, Thune G, Gerber H, Schmidt HP, Smebye AB, Cornelissen G (2020) Waste timber pyrolysis in a medium-scale unit: emission budgets and biochar quality. Sci Total Environ 718:137335. https://doi.org/10.1016/j.scitotenv.2020.13733553

    Article  Google Scholar 

  23. Jouhara H, Ahmada D, Boogaerta I, Katsoua E, Simonsa S, Spencer N (2018) Pyrolysis of domestic based feedstock at temperatures up to 300 °C. Therm Sci Eng Prog 5:117–143. https://doi.org/10.1016/j.tsep.2017.11.007

    Article  Google Scholar 

  24. Yang Z, Liu Y, Zhang J, Mao K, Kurbonova M, Liu G, Zhang R, Wang W (2020) Improvement of biofuel recovery from food waste by integration of anaerobic digestion, digestate pyrolysis and syngas biomethanation under mesophilic and thermophilic conditions. J Clean Prod 256:120594. https://doi.org/10.1016/j.jclepro.2020.120594

    Article  Google Scholar 

  25. Enders A, Krounbi L, Gaunt J, Lehmann J, Chintala R (2019) Dairy manure biochar as value-added potting mix in horticulture and ornamental gardening. Soil Science Society of America International Soils Metting, Jan.6-9, 2019. https://scisoc.confex.com/scisoc/2019sssa/meetingapp.cgi/Paper/116476

  26. Osman AI, Farrell C, Al-Muhtaseb AH, Harrison J, Rooney DW (2020) The production and application of carbon nanomaterials from high alkali silicate herbaceous biomass. Sci Rep 10:2563. https://doi.org/10.1038/s41598-020-59481-7

    Article  Google Scholar 

  27. Chen H, Osman AI, Mangwandi C, Rooney D (2019) Upcycling food waste digestate for energy and heavy metal remediation applications. Resour Conserv Recycl X 3:100015. https://doi.org/10.1016/j.rcrx.2019.100015

    Article  Google Scholar 

  28. Neumann J, Meyer J, Ouadi M, Apfelbacher A, Binder S, Hornung A (2016) The conversion of anaerobic digestion waste into biofuels via a novel thermo-catalytic reforming process. Waste Manag 47:141–148. https://doi.org/10.1016/j.wasman.2015.07.001

    Article  Google Scholar 

  29. Szwaja S, Magdziarz A, Zajemska M, Poskart A, Musial D (2019) Investigation on thermal decomposition of biogas digestate to producer gas 2nd International Conference on the Sustainable Energy and Environmental Development. IOP Conf Ser Earth Environ Sci 214:012140. https://doi.org/10.1088/1755-1315/214/1/012140

    Article  Google Scholar 

  30. Laetsch WM (1968) Chloroplast specialization in dicotyledons possessing the C4-dicarboxylic acid pathway of photosynthetic CO2 fixation. Am J Bot 55(8):875–883. https://doi.org/10.1002/j.1537-2197.1968.tb07444.x

    Article  Google Scholar 

  31. Degtyareva IA, Yapparov AK, Chernov IA (2006) The specificity of the interaction of carbon and nitrogen metabolism in amaranth. Publishing House Center for Innovative Technologies, Kazan, Russian Federation. (In Russian)

  32. Poskachina ER (2014) Ecological-physical and biochemical peculiarities of the redroot amaranth (Amaranthus retroflexus L.), growing in the conditions of Central Yakutia and the prospects for its use. Dissertation, Institute for Biological Problems of Cryolithozone Siberian Branch of RAS, Yakutsk, Russian Federation. (In Russian)

  33. Volkova GA, Shirshova TI, Beshley NV, Matistov NV, Ufimtsev KG (2017) Amaranth (Amaranthus L.): chemical composition and per-specials of introduction in the north. Izvestia of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences 3(31): 15-23. (In Russian)

  34. Karaeva JV, Kamalov RF, Kadiyrov AI (2019) Production of biogas from poultry waste using the biomass of plants from Amaranthaceae family. IOP Conf Ser Earth Environ Sci 288(012096):1–5. https://doi.org/10.1088/1755-1315/288/1/012096

    Article  Google Scholar 

  35. Belostotsky DE (2012) Influence of amaranth on the efficiency biogas production process from organic waste. Dissertation, A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan, Russian Federation. (In Russian)

  36. Minzanova ST, Mironov VF, Belostotskii DE, Mindubaev AZ, Mironova LG, Gins MS, Gins VK, Kononkov PF, Milyukov VA (2018) Materials derived from amarantus cruentus L. used as co-substrates can intensify methanogenesis during bioconversion of organic waste. Agric Biol 53(1):209–217. https://doi.org/10.15389/agrobiology.2018.1.209eng

    Article  Google Scholar 

  37. Seo DK, Hwang J, Park SS, Yu T-U (2010) Study of the pyrolysis of biomass using thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species. J Anal Appl Pyrolysis 89(1):66–73. https://doi.org/10.1016/j.jaap.2010.05.008

    Article  Google Scholar 

  38. Vuppaladadiyam AK, Liu H, Zhao M, Soomro AF, Memon MZ, Dupont V (2019) Thermogravimetric and kinetic analysis to discern synergy during the co-pyrolysis of microalgae and swine manure digestate. Biotechnol Biofuels 12:170. https://doi.org/10.1186/s13068-019-1488-6

    Article  Google Scholar 

  39. Sharara MA, Sadaka SS, Costello TA, Devender KV, Carrier J, Popp M, Thoma G, Djioleu A (2016) Combustion kinetics of swine manure and algal solids. J Therm Anal Calorim 123:687–696. https://doi.org/10.1007/s10973-015-4970-9

    Article  Google Scholar 

  40. Gilfanov MF, Bashkirov VN, Fayzrakhmanova GM, Zabelkin SA, Grachev AN, Halitov AZ, Zemskov IG (2012) Investigation of the thermochemical method of processing organic waste from the agro-industrial complex, the woodworking and forest industries. Bull Kazan Technol Univ 15(18):66–68 (In Russian)

    Google Scholar 

  41. GOST 7657-84 (1986) Charcoal. Specifications (In Russian)

  42. Pulka J, Manczarski P, Stępień P, Styczyńska M, Koziel JA, Białowiec A (2020) Waste-to-carbon: is the torrefied sewage sludge with high ash content a better fuel or fertilizer? Materials 13(4):954. https://doi.org/10.3390/ma13040954

    Article  Google Scholar 

  43. Klaas M, Greenhalf С, Ouadi M, Jahangiri H, Hornung A, Briens C, Berruti F (2020) The effect of torrefaction pre-treatment on the pyrolysis of corn cobs. Results Eng 7:100165. https://doi.org/10.1016/j.rineng.2020.100165

    Article  Google Scholar 

  44. Demirbas A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manag 41:633–646. https://doi.org/10.1016/S0196-8904(99)00130-2

    Article  Google Scholar 

  45. DIN 51731 (1996) Standard by Deutsches Institut Fur Normung E.V. (German National Standard)

  46. Demirbas A, Al-Ghamdi K (2015) Relationships between specific gravities and higher heating values of petroleum components. Pet Sci Technol 33(6):732–740. https://doi.org/10.1080/10916466.2015.1007384

    Article  Google Scholar 

  47. GOST R 8.577-2000 (2000) Volumetric heat (energy) of natural gas combustion. General requirements for methods of determination (In Russian)

  48. Lee HV, Hamid SBA, Zain SK (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. 2014:631013–631020. https://doi.org/10.1155/2014/631013

  49. Huang C, Liu X, Han L, Ma L (2010) The rapid estimation of cellulose, hemicellulose, and lignin contents in rice straw by near infrared spectroscopy. Energ Source Part A 2:114–120. https://doi.org/10.1080/15567030902937127

    Article  Google Scholar 

  50. Yang H, Rong Y, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013

    Article  Google Scholar 

  51. Tsai W-T, Huang P-C, Lin Y-Q (2019) Characterization of biochars produced from dairy manure at high pyrolysis. temperatures. Agronomy 9:634. https://doi.org/10.3390/agronomy9100634

    Article  Google Scholar 

  52. Lуpez-Gonzalez D, Fernandez-Lopez M, Valverde JL, Sanchez-Silva L (2013) Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass. Bioresour Technol 143:562–574. https://doi.org/10.1016/j.biortech.2013.06.052

    Article  Google Scholar 

  53. Fernandez-Lopez M, Parascanu MM, López-González D, Soreanu G, Avalos-Ramírez A, Sanchez P, Valverde JL, Sanchez-Silva L (2015) Catalytic and non-catalytic pyrolysis of biologically treated manure. Environ Eng Manag J 14(2):349–355. https://doi.org/10.30638/eemj.2015.035

    Article  Google Scholar 

  54. Atienza-Martinez M, Abrego J, Gea G, Marias F (2019) Pyrolysis of dairy cattle manure: evolution of char characteristics. J Anal Appl Pyrolysis. https://doi.org/10.1016/j.jaap.2019.104724

    Article  Google Scholar 

  55. Shayakhmetov A, Mustafin A, Massalimov I (2011) Features of termal decomposition of the oxide, peroxide, higroxide and calcium carbonate. Bull Bashkir Univ 16(1):29–32 (In Russian)

    Google Scholar 

  56. Blasi CD (1993) Modeling and simulation of combustion processes of charring and non-charring solid fuels. Prog Energy Combust Sci 19(1):71–104. https://doi.org/10.1016/0360-1285(93)90022-7

    Article  Google Scholar 

  57. Osman AI, Abdelkader A, Johnston CR, Morgan K, Rooney DW (2017) Thermal investigation and kinetic modeling of lignocellulosic biomass combustion for energy production and other applications. Ind Eng Chem Res 56(42):12119–12130. https://doi.org/10.1021/acs.iecr.7b03478

    Article  Google Scholar 

  58. Ma Q, Song W, Wang R, Zou J, Yang R, Zhang S (2018) Physicochemical properties of biochar derived from anaerobically digested dairy manure. Waste Manag 79:729–734. https://doi.org/10.1016/j.wasman.2018.08.023

    Article  Google Scholar 

  59. Ranzi E, Eduardo P, Debiagi A, Frassoldati A, Modeling M (2017) Fast biomass pyrolysis and bio-oil formation. note i: kinetic mechanism of biomass pyrolysis. ACS Sustain Chem Eng 5:2867–2881. https://doi.org/10.1021/acssuschemeng.6b03096

    Article  Google Scholar 

  60. Huang X, Rein G (2016) Thermochemical conversion of biomass in smouldering combustion across scales: the roles of heterogeneous kinetics, oxygen and transport Phenomena. Bioresour Technol 207:409–421. https://doi.org/10.1016/j.biortech.2016.01.027

    Article  Google Scholar 

  61. Jahirul MI, Rasul MG, Chowdhury AA, Ashwath N (2012) Biofuelsproduction through biomass pyrolysis—a technological review. Energies 5(12):4952–5001. https://doi.org/10.3390/en5124952

    Article  Google Scholar 

  62. Boucher M, Chaala A, Roy C (2000) Bio-oils obtained by vacuum pyrolysis of softwoodbark as a liquid fuel for gas turbines. Part I: properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenergy 19(5):337–350. https://doi.org/10.1016/S0961-9534(00)00043-X

    Article  Google Scholar 

  63. Zhang Z, Mangin P, Larose S, Delcroix (2020) Simulation of syngas production via pyrolysis-oil gasification–impacts of operating conditions on syngas properties. BioResources 15(1):729–745

    Article  Google Scholar 

  64. Bridgwater AV (2018) Pyrolysis of solid biomass: basics, processes, and products. Encycl Sustain Sci Technol. https://doi.org/10.1007/978-1-4939-2493-6_984-1

  65. Wiśniewski D, Gołaszewski J, Białowiec A (2015) The pyrolysis and gasification of digestate from agricultural biogas plant. Arch Environ Prot 41(3):70–75. https://doi.org/10.1515/aep-2015-0032

    Article  Google Scholar 

  66. Kwapinska M, Horvat A, Liu Y, Leahy JJ (2020) Pilot scale pyrolysis of activated sludge waste from milk processing factory. Waste Biomass Valor 11:2887–2903. https://doi.org/10.1007/s12649-019-00596-y

    Article  Google Scholar 

  67. Mohan D, Sarswat A, Ok YS, Pitman CU Jr (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review. Bioresour Technol 160:191–202. https://doi.org/10.1016/j.biortech.2014.01.120

    Article  Google Scholar 

  68. Stefaniuk M, Oleszczuk P (2015) Characterization of biochars produced from residues from biogas production. J Anal Appl Pyrolysis 115:157–165. https://doi.org/10.1016/j.jaap.2015.07.011

    Article  Google Scholar 

  69. Smith JL, Collins HP, Bailey VL (2010) The effect of young biochar on soil respiration. Soil Biol Biochem 42:2345–2347. https://doi.org/10.1016/j.soilbio.2010.09.013

    Article  Google Scholar 

  70. Tomczyk A, Sokołowska Z, Boguta P (2020) Biochar physicochemical properties: pyrolysis temperatureand feedstock kind effects. Rev Environ Sci Biotechnol 19:191–215. https://doi.org/10.1007/s11157-020-09523-3

    Article  Google Scholar 

  71. Janus A, Pelfrêne A, Heymans S, Deboffe C, Douay F, Waterlot C (2015) Elaboration, characteristics and advantages of biochars for the management of contaminated soils with a specific overview on Miscanthus biochars. J Environ Manag 162:275–289. https://doi.org/10.1016/j.jenvman.2015.07.056

    Article  Google Scholar 

  72. Tomczyk A, Boguta P, Sokołowska Z (2019) Biochar efficiency in copper removal from haplic soils. Int J Environ Sci Technol 16:4899–4912. https://doi.org/10.1007/s13762-019-02227-4

    Article  Google Scholar 

  73. Wei D, Li B, Huang H, Luo L, Zhang J, Yang Y, Guo J, Tang L, Zeng G, Zhou Y (2018) Biochar-based functional materials in the purification of agricultural wastewater: fabrication, application and future research needs. Chemosphere 197:165–180. https://doi.org/10.1007/s42773-019-00006-5

    Article  Google Scholar 

  74. Wang D, Jiang P, Zhang H, Yuand W (2020) Biochar production and applications in agro and forestry systems: a review. Sci Total Environ 723:137775. https://doi.org/10.1016/j.scitotenv.2020.137775

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia V. Karaeva.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaeva, J.V., Timofeeva, S.S., Bashkirov, V.N. et al. Thermochemical processing of digestate from biogas plant for recycling dairy manure and biomass. Biomass Conv. Bioref. 13, 685–695 (2023). https://doi.org/10.1007/s13399-020-01138-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01138-6

Keywords

Navigation