Skip to main content

Advertisement

Log in

Assessing the bioenergy potential of high-ash anaerobic sewage sludge using pyrolysis kinetics and thermodynamics to design a sustainable integrated biorefinery

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

A new opportunity for producing valuable biorefinery products can be found by integrating biochemical and thermochemical processing with municipal wastewater treatment. This study is the first to evaluate the kinetic triplet and thermodynamic parameters from the pyrolysis of typical Brazilian anaerobic sewage sludge performed in the framework of a multi-step solid-state process. The physicochemical characteristics of the anaerobic sewage sludge are comparable to those obtained from low-rank coals. The pyrolysis characteristics were analyzed by non-isothermal thermogravimetry under different heating rates (10, 25, 50, and 90 K min−1) in an inert atmosphere. Two devolatilization stages were distinguished from the active pyrolysis zone, with an average mass loss of 47.56 wt% (sum) in the range of 398–953 K. For each devolatilization stage, three isoconversional methods (Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose, and Starink) were utilized to calculate the activation energy, and then the compensation effect method was applied to find the pre-exponential factor. The average activation energies calculated ranged from 113.7 to 117.3 kJ mol−1 for the first stage and from 115.7 to 121.9 kJ mol−1 for the second stage, with respective pre-exponential factors of 7.39 × 109 min−1 and 8.80 × 107 min−1. According to the master-plots method, it was found that the first stage followed the fourth-order (F4) model, while the second stage was described by the second-order (F2) model. Based on the statistical evaluation, the devolatilization behaviors reconstructed from overall kinetic expression agree reasonably well with the experimental data, proving its practical importance for designing a pyrolytic processing system using anaerobic sewage sludge as raw material. This study contributes by providing useful insights that can be applied to a large-scale biorefinery as a critical step towards producing biofuels coupled to municipal wastewater treatment in an environmentally sustainable manner.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shahid A, Ishfaq M, Ahmad MS, Malik S, Farooq M, Hui Z, Batawi AH, Shafi ME, Aloqbi AA, Gull M, Mehmood MA (2019) Bioenergy potential of the residual microalgal biomass produced in city wastewater assessed through pyrolysis, kinetics and thermodynamics study to design algal biorefinery. Bioresour Technol 289:121701. https://doi.org/10.1016/j.biortech.2019.121701

    Article  Google Scholar 

  2. SNSA (2019) Brazilian secretary of environment sanitation. Brazilian sanitation information system: diagnosis of water and sewage services – 2017. <http://www.snis.gov.br/diagnostico-agua-e-esgotos/diagnostico-ae-2017> (accessed 01.08.19). 1–226

  3. Sawatdeenarunat C, Surendra KC, Takara D, Oechsner H, Khanal SK (2015) Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol 178:178–186. https://doi.org/10.1016/j.biortech.2014.09.103

    Article  Google Scholar 

  4. Berni M, Dorileo I, Nathia G, Forster-Carneiro T, Lachos D, Santos BGM (2014) Anaerobic digestion and biogas production: combine effluent treatment with energy generation in UASB reactor as biorefinery annex. Int J Chem Eng 2014:1–8. https://doi.org/10.1155/2014/543529

    Article  Google Scholar 

  5. Barbosa RA, Sant’Anna GL (1989) Treatment of raw domestic sewage in an UASB reactor. Water Res 23:1483–1490. https://doi.org/10.1016/0043-1354(89)90112-7

    Article  Google Scholar 

  6. Foresti E (2002) Anaerobic treatment of domestic sewage: established technologies and perspectives. Water Sci Technol 45:181–186. https://doi.org/10.2166/wst.2002.0324

    Article  Google Scholar 

  7. Vieira SMM, Carvalho JL, Barijan FPO, Rech CM (1994) Application of the UASB technology for sewage treatment in a small community at Sumare, Sao Paulo State. Water Sci Technol 30:203–210

    Article  Google Scholar 

  8. de Oliveira SJ, Filho GR, da Silva Meireles C et al (2012) Thermal analysis and FTIR studies of sewage sludge produced in treatment plants. The case of sludge in the city of Uberlândia-MG, Brazil. Thermochim Acta 528:72–75. https://doi.org/10.1016/j.tca.2011.11.010

    Article  Google Scholar 

  9. Samolada MC, Zabaniotou AA (2014) Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece. Waste Manag 34:411–420. https://doi.org/10.1016/j.wasman.2013.11.003

    Article  Google Scholar 

  10. Syed-Hassan SSA, Wang Y, Hu S, Su S, Xiang J (2017) Thermochemical processing of sewage sludge to energy and fuel: fundamentals, challenges and considerations. Renew Sust Energ Rev 80:888–913. https://doi.org/10.1016/j.rser.2017.05.262

    Article  Google Scholar 

  11. Batistella L, Silva V, Suzin RC, Virmond E, Althoff CA, Moreira RFPM, José HJ (2015) Gaseous emissions from sewage sludge combustion in a moving bed combustor. Waste Manag 46:430–439. https://doi.org/10.1016/j.wasman.2015.08.039

    Article  Google Scholar 

  12. Borges NB, Campos JR, Pablos JM (2015) Characterization of residual sand removed from the grit chambers of a wastewater treatment plant and its use as fine aggregate in the preparation of non-structural concrete. Water Pract Technol 10:164–171. https://doi.org/10.2166/wpt.2015.018

    Article  Google Scholar 

  13. Luque L, Westerhof R, Van Rossum G et al (2014) Pyrolysis based bio-refinery for the production of bioethanol from demineralized ligno-cellulosic biomass. Bioresour Technol 161:20–28. https://doi.org/10.1016/j.biortech.2014.03.009

    Article  Google Scholar 

  14. Mills N, Pearce P, Farrow J, Thorpe RB, Kirkby NF (2014) Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies. Waste Manag 34:185–195. https://doi.org/10.1016/j.wasman.2013.08.024

    Article  Google Scholar 

  15. Alves JLF, Da Silva JCG, da Silva Filho VF et al (2019) Bioenergy potential of red macroalgae Gelidium floridanum by pyrolysis: evaluation of kinetic triplet and thermodynamics parameters. Bioresour Technol 291:121892. https://doi.org/10.1016/j.biortech.2019.121892

    Article  Google Scholar 

  16. Naqvi SR, Tariq R, Hameed Z, Ali I, Naqvi M, Chen WH, Ceylan S, Rashid H, Ahmad J, Taqvi SA, Shahbaz M (2019) Pyrolysis of high ash sewage sludge: kinetics and thermodynamic analysis using Coats-Redfern method. Renew Energy 131:854–860. https://doi.org/10.1016/j.renene.2018.07.094

    Article  Google Scholar 

  17. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19. https://doi.org/10.1016/j.tca.2011.03.034

    Article  Google Scholar 

  18. da Silva Filho VF, Batistella L, Alves JLF, da Silva JCG, Althoff CA, Moreira RFPM, José HJ (2019) Evaluation of gaseous emissions from thermal conversion of a mixture of solid municipal waste and wood chips in a pilot-scale heat generator. Renew Energy 141:402–410. https://doi.org/10.1016/j.renene.2019.04.032

    Article  Google Scholar 

  19. Mehmood MA, Ahmad MS, Liu Q, Liu CG, Tahir MH, Aloqbi AA, Tarbiah NI, Alsufiani HM, Gull M (2019) Helianthus tuberosus as a promising feedstock for bioenergy and chemicals appraised through pyrolysis, kinetics, and TG-FTIR-MS based study. Energy Convers Manag 194:37–45. https://doi.org/10.1016/j.enconman.2019.04.076

    Article  Google Scholar 

  20. Dhyani V, Kumar J, Bhaskar T (2017) Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. Bioresour Technol 245:1122–1129. https://doi.org/10.1016/j.biortech.2017.08.189

    Article  Google Scholar 

  21. Shahbeig H, Nosrati M (2020) Pyrolysis of municipal sewage sludge for bioenergy production: thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment. Renew Sust Energ Rev 119:109567. https://doi.org/10.1016/j.rser.2019.109567

    Article  Google Scholar 

  22. Languer MP, Batistella L, Alves JLF, da Silva JCG, da Silva Filho VF, di Domenico M, Moreira RFPM, José HJ (2020) Insights into pyrolysis characteristics of Brazilian high-ash sewage sludges using thermogravimetric analysis and bench-scale experiments with GC-MS to evaluate their bioenergy potential. Biomass Bioenergy 138:105614. https://doi.org/10.1016/j.biombioe.2020.105614

    Article  Google Scholar 

  23. Folgueras MB, Alonso M, Díaz RM (2013) Influence of sewage sludge treatment on pyrolysis and combustion of dry sludge. Energy 55:426–435. https://doi.org/10.1016/j.energy.2013.03.063

    Article  Google Scholar 

  24. Shao J, Yan R, Chen H, Wang B, Lee DH, Liang DT (2008) Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry Fourier transform infrared analysis. Energy Fuel 22:38–45. https://doi.org/10.1021/ef700287p

    Article  Google Scholar 

  25. Vyazovkin S, Burnham AK, Favergeon L, Koga N, Moukhina E, Pérez-Maqueda LA, Sbirrazzuoli N (2020) ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim Acta 689:178597. https://doi.org/10.1016/j.tca.2020.178597

    Article  Google Scholar 

  26. Alves JLF, Da Silva JCG, da Silva Filho VF et al (2019) Determination of the bioenergy potential of Brazilian pine-fruit shell via pyrolysis kinetics, thermodynamic study, and evolved gas analysis. Bioenergy Res 12:168–183. https://doi.org/10.1007/s12155-019-9964-1

    Article  Google Scholar 

  27. Domenico MD, Amorim SM, Collazzo GC, José HJ, Moreira RFPM (2019) Coal gasification in the presence of lithium orthosilicate. Part 1: reaction kinetics. Chem Eng Res Des 141:529–539. https://doi.org/10.1016/j.cherd.2018.11.011

    Article  Google Scholar 

  28. Uyar T, Suyadal Y (2019) Deactivation kinetics for lignite gasification in a fluidized bed reactor. Fuel 236:1050–1056. https://doi.org/10.1016/j.fuel.2018.09.028

    Article  Google Scholar 

  29. Thipkhunthod P, Meeyoo V, Rangsunvigit P, Kitiyanan B, Siemanond K, Rirksomboon T (2006) Pyrolytic characteristics of sewage sludge. Chemosphere 64:955–962. https://doi.org/10.1016/j.chemosphere.2006.01.002

    Article  Google Scholar 

  30. Fonts I, Azuara M, Gea G, Murillo MB (2009) Study of the pyrolysis liquids obtained from different sewage sludge. J Anal Appl Pyrolysis 85:184–191. https://doi.org/10.1016/j.jaap.2008.11.003

    Article  Google Scholar 

  31. García R, Pizarro C, Lavín AG, Bueno JL (2012) Characterization of Spanish biomass wastes for energy use. Bioresour Technol 103:249–258. https://doi.org/10.1016/j.biortech.2011.10.004

    Article  Google Scholar 

  32. Ahmad MS, Mehmood MA, Luo H, Shen B, Latif M, Ghani WAWAK, Alkhattabi NA, Aloqbi AA, Jambi EJ, Gull M, Rashid U (2019) Pyrolysis and Thermogravimetric study to elucidate the bioenergy potential of novel feedstock produced on poor soils while keeping the environmental sustainability intact. Sustainability 11:3592. https://doi.org/10.3390/su11133592

    Article  Google Scholar 

  33. Ahmad MS, Mehmood MA, Liu C-G, Tawab A, Bai FW, Sakdaronnarong C, Xu J, Rahimuddin SA, Gull M (2018) Bioenergy potential of Wolffia arrhiza appraised through pyrolysis, kinetics, thermodynamics parameters and TG-FTIR-MS study of the evolved gases. Bioresour Technol 253:297–303. https://doi.org/10.1016/j.biortech.2018.01.033

    Article  Google Scholar 

  34. Yao Z, Yu S, Su W, Wu W, Tang J, Qi W (2020) Kinetic studies on the pyrolysis of plastic waste using a combination of model-fitting and model-free methods. Waste Manag Res 38:77–85. https://doi.org/10.1177/0734242X19897814

    Article  Google Scholar 

  35. Yao Z, Yu S, Su W, Wu W, Tang J, Qi W (2020) Comparative study on the pyrolysis kinetics of polyurethane foam from waste refrigerators. Waste Manag Res 38:271–278. https://doi.org/10.1177/0734242X19877682

    Article  Google Scholar 

  36. Konwar K, Nath HP, Bhuyan N, Saikia BK, Borah RC, Kalita AC, Saikia N (2019) Effect of biomass addition on the devolatilization kinetics, mechanisms and thermodynamics of a northeast Indian low rank sub-bituminous coal. Fuel 256:115926. https://doi.org/10.1016/j.fuel.2019.115926

    Article  Google Scholar 

  37. Tahir MH, Çakman G, Goldfarb JL, Topcu Y, Naqvi SR, Ceylan S (2019) Demonstrating the suitability of canola residue biomass to biofuel conversion via pyrolysis through reaction kinetics, thermodynamics and evolved gas analyses. Bioresour Technol 279:67–73. https://doi.org/10.1016/j.biortech.2019.01.106

    Article  Google Scholar 

  38. Hu M, Chen Z, Wang S, Guo D, Ma C, Zhou Y, Chen J, Laghari M, Fazal S, Xiao B, Zhang B, Ma S (2016) Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser–Suzuki deconvolution, and iso-conversional method. Energy Convers Manag 118:1–11. https://doi.org/10.1016/j.enconman.2016.03.058

    Article  Google Scholar 

  39. Alves JLF, Da Silva JCG, Costa RL et al (2019) Investigation of the bioenergy potential of microalgae Scenedesmus acuminatus by physicochemical characterization and kinetic analysis of pyrolysis. J Therm Anal Calorim 135:3269–3280. https://doi.org/10.1007/s10973-018-7506-2

    Article  Google Scholar 

  40. Alves JLF, da Silva JCG, da Silva Filho VF, Alves RF, de Araujo Galdino WV, de Sena RF (2019) Kinetics and thermodynamics parameters evaluation of pyrolysis of invasive aquatic macrophytes to determine their bioenergy potentials. Biomass Bioenergy 121:28–40. https://doi.org/10.1016/j.biombioe.2018.12.015

    Article  Google Scholar 

  41. Monlau F, Sambusiti C, Antoniou N, Barakat A, Zabaniotou A (2015) A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process. Appl Energy 148:32–38. https://doi.org/10.1016/j.apenergy.2015.03.024

    Article  Google Scholar 

Download references

Funding

This work was supported by the Brazil’s National Council for Scientific and Technological Development (CNPq/Brazil Process 458412/2014-7 and 303742/2017-8) and the Coordination for the Improvement of Higher Education Personnel (CAPES/Brazil Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luiz Francisco Alves.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

A new option for useful biorefinery products from municipal wastewater treatment

High-ash anaerobic sewage sludge is an underutilized feedstock for pyrolysis

Bioenergy potential of high-ash anaerobic sewage sludge via pyrolysis was evaluated

New data for optimizing a pyrolysis process in an integrated biorefinery approach

The pyrolysis can be combined with anaerobic digestion for sustainable biorefining

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, J.L.F., da Silva, J.C.G., Languer, M.P. et al. Assessing the bioenergy potential of high-ash anaerobic sewage sludge using pyrolysis kinetics and thermodynamics to design a sustainable integrated biorefinery. Biomass Conv. Bioref. 12, 693–704 (2022). https://doi.org/10.1007/s13399-020-01023-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-01023-2

Keywords

Navigation