Skip to main content
Log in

Kinetics, equilibrium, and thermodynamics of the blue 19 dye adsorption process using residual biomass attained from rice cultivation

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Rice husk ash and rice husk are waste materials generated in the rice agro-industries. This study focuses on the possibility of using these materials as adsorbents for the removal of reactive blue dye 19. The adsorbents were characterized by employing the point of zero charge technique, scanning electron microscopy, X-ray microanalysis, and Fourier-transform infrared spectroscopy. The adsorption study was performed in a static system and by determining the influence of the initial concentration, adsorbent dose, initial pH, contact time, and temperature effect. The conditions of the removal process were established as being an initial pH 2, an adsorbent dose of 1 g/100 mL, and an equilibrium time of 120 min. A kinetic study was performed, and the data obtained for rice husk ash as regards blue dye 19 adsorption fitted best to the Bangham model, while those obtained for RH fitted best to the pseudo-second order and Bangham models. The equilibrium isotherms were analyzed by employing the Langmuir, Freundlich, Toth, and Sips models, and the Langmuir and Toth models proved to be the best representatives of blue dye 19 adsorption for both rice husk ash and rice husk. The thermodynamics of the adsorption process was studied, showing that the rice husk/blue dye 19 and rice husk ash/blue dye 19 removal systems were spontaneous and exothermic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Naje AS, Chelliapan S, Zakaria Z, Ajeel MA, Alaba PA (2017) A review of electrocoagulation technology for the treatment of textile wastewater. Rev Chem Eng 33(3):263–292. https://doi.org/10.1515/revce-2016-0019

    Article  Google Scholar 

  2. North LL, Cameron JD (2000) Grassroots-based rural development strategies: Ecuador in comparative perspective. World Dev 28(10):1751–1766. https://doi.org/10.1016/s0305-750x(00)00056-5

    Article  Google Scholar 

  3. Schneider K, Hafner C, Jäger I (2004) Mutagenicity of textile dye products. J Appl Toxicol 24(2):83–91. https://doi.org/10.1002/jat.953

    Article  Google Scholar 

  4. Singh Z, Chadha P (2016) Textile industry and occupational cancer. J Occup Med Toxicol 11(1):39. https://doi.org/10.1186/s12995-016-0128-3

    Article  Google Scholar 

  5. dos Santos RMM, Gonsalves RGL, Constantino VRL, Santilli CV, Borges PD, Tronto J, Pinto FG (2017) Adsorption of acid yellow 42 dye on calcined layered double hydroxide: effect of time, concentration, pH and temperature. Appl Clay Sci 140:132–139. https://doi.org/10.1016/j.clay.2017.02.005

    Article  Google Scholar 

  6. Gurel L (2017) Biosorption of textile dye reactive blue 221 by capia pepper (Capsicum annuum L.) seeds. Water Sci Technol 75(8):1889–1898. https://doi.org/10.2166/wst.2017.068

    Article  Google Scholar 

  7. Berkessa YW, Yan B, Li T, Jegatheesan V, Zhang Y (2020) Treatment of anthraquinone dye textile wastewater using anaerobic dynamic membrane bioreactor: performance and microbial dynamics. Chemosphere 238:124539. https://doi.org/10.1016/j.chemosphere.2019.124539

    Article  Google Scholar 

  8. Hethnawi A, Nassar NN, Manasrah AD, Vitale G (2017) Polyethylenimine-functionalized pyroxene nanoparticles embedded on diatomite for adsorptive removal of dye from textile wastewater in a fixed-bed column. Chem Eng J 320:389–404. https://doi.org/10.1016/j.cej.2017.03.057

    Article  Google Scholar 

  9. Dotto J, Fagundes-Klen MR, Veit MT, Palácio SM, Bergamasco R (2019) Performance of different coagulants in the coagulation/flocculation process of textile wastewater. J Clean Prod 208:656–665. https://doi.org/10.1016/j.jclepro.2018.10.112

    Article  Google Scholar 

  10. Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manag 93(1):154–168. https://doi.org/10.1016/j.jenvman.2011.09.012

    Article  Google Scholar 

  11. Javaid R, Qazi UY (2019) Catalytic oxidation process for the degradation of synthetic dyes: an overview. Int J Environ Res Public Health 16(11):27. https://doi.org/10.3390/ijerph16112066

    Article  Google Scholar 

  12. Thamaraiselvan C, Noel M (2015) Membrane processes for dye wastewater treatment: recent Progress in fouling control. Crit Rev Environ Sci Technol 45(10):1007–1040. https://doi.org/10.1080/10643389.2014.900242

    Article  Google Scholar 

  13. Torres GF, Mendez JAO, Tinoco DL, Marin ED, Arana J, Herrera-Melian JA, Espino-Estevez MR, Rodrigez JMD, Pena JP (2016) Application of advanced oxidation technologies and sand filter for the detoxification of effluents from small textile industries in Ecuador. Desalin Water Treat 57(1):24288–24298. https://doi.org/10.1080/19443994.2016.1141711

    Article  Google Scholar 

  14. Jia ZG, Li ZY, Ni T, Li SB (2017) Adsorption of low-cost absorption materials based on biomass (Cortaderia selloana flower spikes) for dye removal: kinetics, isotherms and thermodynamic studies. J Mol Liq 229:285–292. https://doi.org/10.1016/j.molliq.2016.12.059

    Article  Google Scholar 

  15. USDA (2019) Rice outlook. United States Department of Agriculture. https://www.ers.usda.gov/webdocs/publications/93732/rcs-19h.pdf?v=9235.5

  16. Moreno B (2015) Rendimientos de arroz en cáscara en el Ecuador, primer cuatrimestre del 2015. Ministerio de Agricultura, Ganadería, Acuacultura y Pesca, Quito

  17. Chowdhury S, Mishra R, Saha P, Kushwaha P (2011) Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 265(1):159–168. https://doi.org/10.1016/j.desal.2010.07.047

    Article  Google Scholar 

  18. Ahmaruzzaman M, Gupta VK (2011) Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind Eng Chem Res 50(24):13589–13613. https://doi.org/10.1021/ie201477c

    Article  Google Scholar 

  19. Sharma P, Kaur R, Baskar C, Chung W-J (2010) Removal of methylene blue from aqueous waste using rice husk and rice husk ash. Desalination 259(1):249–257. https://doi.org/10.1016/j.desal.2010.03.044

    Article  Google Scholar 

  20. Naseer R, Afzal N, Zulfiqar-Ul H, Saeed S, Mujhahid H, Faryal S, Aslam S, Habib-Ur R (2020) Effect of bronsted base on topological alteration of rice husk as an efficient adsorbent comparative to rice husk ash for azo dyes. Pol J Environ Stud 29(4):2795–2802. https://doi.org/10.15244/pjoes/112353

    Article  Google Scholar 

  21. Mishra A, Clark JH, Kraus GA, Seidl PR, Stankiewicz A (2013) Green materials for sustainable water remediation and treatment. Royal Society of Chemistry

  22. Campos NF, Barbosa C, Rodriguez-Diaz JM, Duarte M (2018) Removal of naphthenic acids using activated charcoal: kinetic and equilibrium studies. Adsorpt Sci Technol 36(7–8):1405–1421. https://doi.org/10.1177/0263617418773844

    Article  Google Scholar 

  23. Xie A, Dai J, Chen X, He J, Chang Z, Yan Y, Li C (2016) Hierarchical porous carbon materials derived from a waste paper towel with ultrafast and ultrahigh performance for adsorption of tetracycline. RSC Adv 6(77):72985–72998. https://doi.org/10.1039/C6RA17286E

    Article  Google Scholar 

  24. Andrade CA, Zambrano-Intriago LA, Oliveira NS, Vieira JS, Quiroz-Fernández LS, Rodríguez-Díaz JM (2020) Adsorption behavior and mechanism of oxytetracycline on rice husk ash: kinetics, equilibrium, and thermodynamics of the process. Water Air Soil Pollut 231(3). https://doi.org/10.1007/s11270-020-04473-6

  25. Ebrahimian Pirbazari A, Fakhari Kisom B, Ghamangiz Khararoodi M (2016) Anionic surfactant-modified rice straw for removal of methylene blue from aqueous solution. Desalin Water Treat 57(39):18202–18216. https://doi.org/10.1080/19443994.2015.1090919

    Article  Google Scholar 

  26. Rodriguez-Diaz JM, Garcia JOP, Sanchez LRB, da Silva MG, da Silva VL, Arteaga-Perez LE (2015) Comprehensive characterization of sugarcane bagasse ash for its use as an adsorbent. BioEnergy Res 8(4):1885–1895. https://doi.org/10.1007/s12155-015-9646-6

    Article  Google Scholar 

  27. Fávaro SL, Lopes MS, Vieira de Carvalho Neto AG, Rogério de Santana R, Radovanovic E (2010) Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites. Compos A: Appl Sci Manuf 41(1):154–160. https://doi.org/10.1016/j.compositesa.2009.09.021

    Article  Google Scholar 

  28. Genieva S, Turmanova S, Dimitrova A, Vlaev L (2008) Characterization of rice husks and the products of its thermal degradation in air or nitrogen atmosphere. J Therm Anal Calorim 93(2):387–396

    Article  Google Scholar 

  29. Lakshmi UR, Srivastava VC, Mall ID, Lataye DH (2009) Rice husk ash as an effective adsorbent: evaluation of adsorptive characteristics for indigo carmine dye. J Environ Manag 90(2):710–720. https://doi.org/10.1016/j.jenvman.2008.01.002

    Article  Google Scholar 

  30. Firdaus MYN, Osman H, Metselaar HS, Rozyanty AR (2016) Preparation and characterization of active SiO2 from Cymbopogon citratus ash calcined at different temperature. BioResources 11(1):2839–2849

    Google Scholar 

  31. Srivastava VC, Mall ID, Mishra IM (2006) Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA. J Hazard Mater 134(1–3):257–267. https://doi.org/10.1016/j.jhazmat.2005.11.052

    Article  Google Scholar 

  32. Riyap HI, Bewa CN, Banenzoué C, Tchakouté HK, Rüscher CH, Kamseu E, Bignozzi MC, Leonelli C (2019) Microstructure and mechanical, physical and structural properties of sustainable lightweight metakaolin-based geopolymer cements and mortars employing rice husk. J Asian Ceram Soc 7(2):199–212. https://doi.org/10.1080/21870764.2019.1606140

    Article  Google Scholar 

  33. Zou WH, Li K, Bai HJ, Shi XL, Han RP (2011) Enhanced cationic dyes removal from aqueous solution by oxalic acid modified rice husk. J Chem Eng Data 56(5):1882–1891. https://doi.org/10.1021/je100893h

    Article  Google Scholar 

  34. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingarl 24:1–39

    Google Scholar 

  35. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  Google Scholar 

  36. Bangham DH, Burt FP (1924) The behaviour of gases in contact with glass surfaces. Proc R soc Lond Ser A-Contain Pap Math Phys Charact 105(732):481–488. https://doi.org/10.1098/rspa.1924.0032

    Article  Google Scholar 

  37. Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89(2):31–60

    Article  Google Scholar 

  38. Kaykioğlu G, Güneş E (2015) Kinetic and equilibrium study of methylene blue adsorption using H2SO4− activated rice husk ash. Desalin Water Treat 57(15):7085–7097. https://doi.org/10.1080/19443994.2015.1014859

    Article  Google Scholar 

  39. Shanker M, Chinniagounder T (2012) Adsorption of reactive dye using low cost adsorbent: cocoa (Theobroma Cacao) Shell. World J Appl Environ Chem 1(1):22–29

    Google Scholar 

  40. Mane VS, Mall ID, Srivastava VC (2007) Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution. Dyes Pigments 73(3):269–278. https://doi.org/10.1016/j.dyepig.2005.12.006

    Article  Google Scholar 

  41. Wu F-C, Tseng R-L, Juang R-S (2009) Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem Eng J 153(1):1–8. https://doi.org/10.1016/j.cej.2009.04.042

    Article  Google Scholar 

  42. Dahri MK, Kooh MRR, Lim LBL (2014) Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamic and regeneration studies. J Environ Chem Eng 2(3):1434–1444. https://doi.org/10.1016/j.jece.2014.07.008

    Article  Google Scholar 

  43. Mezenner NY, Bensmaili A (2009) Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. Chem Eng J 147(2–3):87–96. https://doi.org/10.1016/j.cej.2008.06.024

    Article  Google Scholar 

  44. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403. https://doi.org/10.1021/ja02242a004

    Article  Google Scholar 

  45. Freundlich H (1906) Adsorption in solution Phys. In: Chem Soc, pp 1361–1368

  46. Toth J (1971) State equation of the solid-gas interface layers. Model Chem 69:311–328

    Google Scholar 

  47. Sips R (1948) Combined form of Langmuir and Freundlich equations. J Chem Phys 16(429):490–495

    Article  Google Scholar 

  48. Srivastava VC, Mall ID, Mishra IM (2007) Adsorption thermodynamics and isosteric heat of adsorption of toxic metal ions onto bagasse fly ash (BFA) and rice husk ash (RHA). Chem Eng J 132(1–3):267–278. https://doi.org/10.1016/j.cej.2007.01.007

    Article  Google Scholar 

  49. Ho YS, Porter JF, McKay G (2002) Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil Pollut 141(1):1–33. https://doi.org/10.1023/A:1021304828010

    Article  Google Scholar 

  50. Perez-Marin AB, Zapata VM, Ortuno JF, Aguilar M, Saez J, Llorens M (2007) Removal of cadmium from aqueous solutions by adsorption onto orange waste. J Hazard Mater 139(1):122–131. https://doi.org/10.1016/j.jhazmat.2006.06.008

    Article  Google Scholar 

  51. Fawzy MA, Gomaa M (2020) Use of algal biorefinery waste and waste office paper in the development of xerogels: a low cost and eco-friendly biosorbent for the effective removal of Congo red and Fe (II) from aqueous solutions. J Environ Manag 262:110380. https://doi.org/10.1016/j.jenvman.2020.110380

    Article  Google Scholar 

  52. MacQueen JT (1967) Some observations concerning the van't Hoff equation. J Chem Educ 44(12):755. https://doi.org/10.1021/ed044p755

    Article  Google Scholar 

  53. Ghosh A, Das G (2020) Green synthesis of Sn(II)-BDC MOF: preferential and efficient adsorption of anionic dyes. Microporous Mesoporous Mater 297:110039. https://doi.org/10.1016/j.micromeso.2020.110039

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Laboratory of the Centro de Materiais da Universidade do Porto (CEMUP), Innovation and Development Area of La Fabril, Laboratório de Engenharia e Processos Ambientais (LEPA) and Laboratório de Engenharia Ambiental (LEA), for their help in the adsorbent characterization and the scanning electron microscopy, X-ray, and FTIR analyses and to the company Espectrocrom, especially in memory of the Engineer Edmundo Regalado by his unconditional support.

Funding

To the Universidad Técnica de Manabí for financing the Project “Evaluation of the use of biomass for the remediation of environmental pollutants by the Technical University of Manabí” PYT235-CONV2019-FCMFQ0018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Manuel Rodríguez-Díaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zambrano-Intriago, L.A., Gorozabel-Mendoza, M.L., Córdova Mosquera, A. et al. Kinetics, equilibrium, and thermodynamics of the blue 19 dye adsorption process using residual biomass attained from rice cultivation. Biomass Conv. Bioref. 12, 3843–3855 (2022). https://doi.org/10.1007/s13399-020-00944-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00944-2

Keywords

Navigation