Skip to main content

Advertisement

Log in

Harnessing bioenergy and high value–added products from rice residues: a review

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Rice is one of the most widely consumed staple foods in the world, generating enormous biomass residues. In recent years, the abundance of residues as well as recent advancements in conversion technologies has improved the viability of bioenergy from rice residues as a potential source of renewable energy. This review assesses the technical barriers in converting rice residues (particularly rice straw and rice husk) to bioenergy around the globe and highlights the issues involved in current technologies. Strategies to resolve those barriers are recommended for thermochemical and biochemical conversion technologies. A comprehensive summary on the latest developments on conversion technologies is presented. The work also discusses the latest works in high value–added products from rice biomass conversion focused on lactic acid, levulinic acid, xylose, adsorbents for contaminants, alternative materials in the construction industry, and applications in renewable energy. Future perspectives and research gaps are also elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.Code availability Not applicable.

References

  1. Herzog A V, Lipman TE, Kammen DM (2001) Renewable energy sources, our fragile world: challenges and opportunities for sustainable development. In: Encyclopedia of Life Support Systems (EOLSS), Vol 1. UNESCO-EOLSS Secretariat, EOLSS Publishers Co. Ltd., pp 1–63

  2. Lim JS, Abdul Manan Z, Wan Alwi SR, Hashim H (2012) A review on utilisation of biomass from rice industry as a source of renewable energy. Renew Sust Energ Rev 16:3084–3094. https://doi.org/10.1016/j.rser.2012.02.051

    Article  Google Scholar 

  3. Kummamuru B (2017) WBA global bioenergy statistics 2017. doi: https://worldbioenergy.org/uploads/170611%20Presentation_EUBCE.pdf. Accessed 10 December 2019.

  4. Food and Agricultural Organization of the United Nations (2019) FAOSTAT database. In: FAOSTAT Database. http://www.fao.org/faostat/en/?#home. Accessed 15 May 2020.

  5. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375. https://doi.org/10.1016/j.biombioe.2003.08.002

    Article  Google Scholar 

  6. Satlewal A, Agrawal R, Bhagia S, Das P, Ragauskas AJ (2017) Rice straw as a feedstock for biofuels: availability, recalcitrance, and chemical properties. Biofuels Bioprod Biorefin 12:83–107. https://doi.org/10.1002/bbb.1818

    Article  Google Scholar 

  7. Antunes RA, de Oliveira MCL (2013) Corrosion in biomass combustion: a materials selection analysis and its interaction with corrosion mechanisms and mitigation strategies. Corros Sci 76:6–26. https://doi.org/10.1016/J.CORSCI.2013.07.013

    Article  Google Scholar 

  8. Niu Y, Tan H, Hui S (2016) Ash-related issues during biomass combustion: alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Prog Energy Combust Sci 52:1–61. https://doi.org/10.1016/j.pecs.2015.09.003

    Article  Google Scholar 

  9. Tian Y, Zhou X, Yang Y, Nie L (2020) Experimental analysis of air-steam gasification of biomass with coal-bottom ash. J Energy Inst 93:25–30. https://doi.org/10.1016/j.joei.2019.04.012

    Article  Google Scholar 

  10. Makwana JP, Pandey J, Mishra G (2019) Improving the properties of producer gas using high temperature gasification of rice husk in a pilot scale fluidized bed gasifier (FBG). Renew Energy 130:943–951. https://doi.org/10.1016/j.renene.2018.07.011

    Article  Google Scholar 

  11. Wang Y, Zeng Z, Tian X, Dai L, Jiang L, Zhang S, Wu Q, Wen P, Fu G, Liu Y, Ruan R (2018) Production of bio-oil from agricultural waste by using a continuous fast microwave pyrolysis system. Bioresour Technol 269:162–168. https://doi.org/10.1016/j.biortech.2018.08.067

    Article  Google Scholar 

  12. Akyol Ç, Ince O, Bozan M, Ozbayram EG, Ince B (2019) Fungal bioaugmentation of anaerobic digesters fed with lignocellulosic biomass: what to expect from anaerobic fungus Orpinomyces sp. Bioresour Technol 277:1–10. https://doi.org/10.1016/j.biortech.2019.01.024

    Article  Google Scholar 

  13. Van Hung N, Quilloy R, Gummert M (2018) Improving energy efficiency and developing an air-cooled grate for the downdraft rice husk furnace. Renew Energy 115:969–977. https://doi.org/10.1016/j.renene.2017.09.012

    Article  Google Scholar 

  14. Madhiyanon T, Sathitruangsak P, Sungworagarn S, Udomman T (2020) Investigation of rice-straw-ash fouling/slagging and countermeasures using supplementary additives and co-firing with Si-Al-rich coal in a pilot-scale grate-fired combustor. J Energy Inst. https://doi.org/10.1016/j.joei.2020.04.001

  15. Colom-Díaz JM, Alzueta MU, Fernandes U, Costa M (2017) Emissions of polycyclic aromatic hydrocarbons during biomass combustion in a drop tube furnace. Fuel 207:790–800. https://doi.org/10.1016/j.fuel.2017.06.084

    Article  Google Scholar 

  16. Rong H, Wang T, Zhou M, Wang H, Hou H, Xue Y (2017) Combustion characteristics and slagging during co-combustion of rice husk and sewage sludge blends. Energies 10(4):1–13. https://doi.org/10.3390/en10040438

    Article  Google Scholar 

  17. Migo-Sumagang MVP, Van Hung N, Detras MCM et al (2020) Optimization of a downdraft furnace for rice straw-based heat generation. Renew Energy 148:953–963. https://doi.org/10.1016/j.renene.2019.11.001

    Article  Google Scholar 

  18. Cao Z, Niu J, Gu Y, Zhang R, Liu Y, Luo L (2020) Catalytic pyrolysis of rice straw: screening of various metal salts, metal basic oxide, acidic metal oxide and zeolite catalyst on products yield and characterization. J Clean Prod (in press) 269:122079. https://doi.org/10.1016/j.jclepro.2020.122079

    Article  Google Scholar 

  19. He Y, Zhao Y, Chai M, Zhou Z, Sarker M, Li C, Liu R, Cai J, Liu X (2020) Comparative study of fast pyrolysis, hydropyrolysis and catalytic hydropyrolysis of poplar sawdust and rice husk in a modified Py-GC/MS microreactor system: insights into product distribution, quantum description and reaction mechanism. Renew Sust Energ Rev 119:109604. https://doi.org/10.1016/j.rser.2019.109604

    Article  Google Scholar 

  20. Gautam N, Chaurasia A (2020) Study on kinetics and bio-oil production from rice husk, rice straw, bamboo, sugarcane bagasse and neem bark in a fixed-bed pyrolysis process. Energy 190:116434. https://doi.org/10.1016/j.energy.2019.116434

    Article  Google Scholar 

  21. Wu J, Elliston A, Le Gall G et al (2018) Optimising conditions for bioethanol production from rice husk and rice straw: effects of pre-treatment on liquor composition and fermentation inhibitors. Biotechnol Biofuels 11:1–13. https://doi.org/10.1186/s13068-018-1062-7

    Article  Google Scholar 

  22. Madu JO, Agboola BO (2018) Bioethanol production from rice husk using different pretreatments and fermentation conditions. 3. Biotech 8(1):15. https://doi.org/10.1007/s13205-017-1033-x

    Article  Google Scholar 

  23. Mohanty S (2013) Trend in global rice consumption. Rice Today 12:44–45

    Google Scholar 

  24. Gummert M, Phan HH, Pyseth M et al (2010) Emerging technological and institutional opportunities for efficient postproduction operations. In: Pandey S, Byerlee D, Dawe D et al (eds) Rice in the global economy: strategic research and policy issues for food security. International Rice Research Institute, Los Baños (Philippines), pp 333–355

    Google Scholar 

  25. Jenkins B, Baxter L, Miles T, Miles T (1998) Combustion properties of biomass. Fuel Process Technol 54:17–46. https://doi.org/10.1016/S0378-3820(97)00059-3

    Article  Google Scholar 

  26. Worasuwannarak N, Sonobe T, Tanthapanichakoon W (2007) Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique. J Anal Appl Pyrolysis 78:265–271. https://doi.org/10.1016/j.jaap.2006.08.002

    Article  Google Scholar 

  27. Mandal KG, Misra AK, Hati KM et al (2004) Rice residue-management options and effects on soil properties and crop productivity. J Food, Agric Environ 2:224–231

    Google Scholar 

  28. Mn L, Venkatachalapathy N, Manickavasagan A (2017) Physicochemical characteristics of rice bran. In: Manickavasagan A, Santhakumar C, Venkatachalapathy N (eds) Brown rice. Springer Nature, Switzerland, pp 79–90

    Google Scholar 

  29. Kahlon T (2009) Rice bran: production, composition, functionality and food applications, physiological benefits. In: Cho SS, Samuel P (eds) Food applications and health benefits. CRC Press, Florida, pp 305–321

    Google Scholar 

  30. Fabian C, Ju YH (2011) A review on rice bran protein: its properties and extraction methods. Crit Rev Food Sci Nutr 51:816–827. https://doi.org/10.1080/10408398.2010.482678

    Article  Google Scholar 

  31. Abaide ER, Tres MV, Zabot GL, Mazutti MA (2019) Reasons for processing of rice coproducts: reality and expectations. Biomass Bioenergy 120:240–256. https://doi.org/10.1016/j.biombioe.2018.11.032

    Article  Google Scholar 

  32. Mansaray KG, Ghaly AE (1997) Physical and thermochemical properties of rice husk. Energy Sources 19:989–1004. https://doi.org/10.1080/00908319708908904

    Article  Google Scholar 

  33. Van Soest PJ (2006) Rice straw, the role of silica and treatments to improve quality. Anim Feed Sci Technol 130(3-4):137–171

    Article  Google Scholar 

  34. Bakker R, Elbersen W, Poppens R, Lesschen JP (2013) Rice straw and wheat straw-potential feedstocks for the biobased economy potent. NL Agency, the Netherlands

    Google Scholar 

  35. Quispe I, Navia R, Kahhat R (2017) Energy potential from rice husk through direct combustion and fast pyrolysis: a review. Waste Manag 59:200–210. https://doi.org/10.1016/j.wasman.2016.10.001

    Article  Google Scholar 

  36. Feng D, Zhao Y, Zhang Y, Zhang Z, Xu H, Zhang L, Sun S (2017) Synergies and progressive effects of H2O/CO2 and nascent tar on biochar structure and reactivity during gasification. Fuel Process Technol 168:1–10. https://doi.org/10.1016/j.fuproc.2017.08.030

    Article  Google Scholar 

  37. Tanger P, Field JL, Jahn CE, DeFoort MW, Leach JE (2013) Biomass for thermochemical conversion: targets and challenges. Front Plant Sci 4:218. https://doi.org/10.3389/fpls.2013.00218

    Article  Google Scholar 

  38. Li CZ (2013) Importance of volatile–char interactions during the pyrolysis and gasification of low-rank fuels–a review. Fuel 112:609–623. https://doi.org/10.1016/J.FUEL.2013.01.031

    Article  Google Scholar 

  39. Isahak WNRW, Hisham MWM, Yarmo MA, Yun Hin T (2012) A review on bio-oil production from biomass by using pyrolysis method. Renew Sust Energ Rev 16:5910–5923. https://doi.org/10.1016/j.rser.2012.05.039

    Article  Google Scholar 

  40. Zheng JL (2008) Pyrolysis oil from fast pyrolysis of maize stalk. J Anal Appl Pyrolysis 83:205–212. https://doi.org/10.1016/J.JAAP.2008.08.005

    Article  Google Scholar 

  41. Dufour A, Girods P, Masson E, Rogaume Y, Zoulalian A (2009) Synthesis gas production by biomass pyrolysis: effect of reactor temperature on product distribution. Int J Hydrog Energy 34:1726–1734. https://doi.org/10.1016/j.ijhydene.2008.11.075

    Article  Google Scholar 

  42. Mckendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46

    Article  Google Scholar 

  43. Danquah M, Liu B, Haru R (2011) Analysis of process configurations for bioethanol production from microalgal biomass. In: Shaukat SS (ed) Progress in Biomass and Bioenergy Production, IntechOpen, doi: https://doi.org/10.5772/17468

  44. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  Google Scholar 

  45. Chakma S, Ranjan A, Choudhury HA, Dikshit PK, Moholkar VS (2016) Bioenergy from rice crop residues: role in developing economies. Clean Techn Environ Policy 18:373–394. https://doi.org/10.1007/s10098-015-1051-5

    Article  Google Scholar 

  46. Majidian P, Tabatabaei M, Zeinolabedini M, Naghshbandi MP, Chisti Y (2018) Metabolic engineering of microorganisms for biofuel production. Renew Sust Energ Rev 82:3863–3885. https://doi.org/10.1016/j.rser.2017.10.085

    Article  Google Scholar 

  47. Selim KA, El-Ghwas DE, Easa SM, Abdelwahab Hassan MI (2018) Bioethanol a microbial biofuel metabolite; new insights of yeasts metabolic engineering. Fermentation 4(1):16. https://doi.org/10.3390/fermentation4010016

    Article  Google Scholar 

  48. Reginatto V, Antônio RV (2015) Fermentative hydrogen production from agroindustrial lignocellulosic substrates. Braz J Microbiol 46(2):323–335. https://doi.org/10.1590/S1517-838246220140111

    Article  Google Scholar 

  49. Azwar MY, Hussain MA, Abdul-Wahab AK (2014) Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. Renew Sust Energ Rev 31:158–173. https://doi.org/10.1016/J.RSER.2013.11.022

    Article  Google Scholar 

  50. Hay JXW, Wu TY, Juan JC, Jahim JM (2013) Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: overview, economics, and future prospects of hyddrogen usage. Biofuels Bioprod Biorefin 7(3):334–352. https://doi.org/10.1002/bbb.1403

    Article  Google Scholar 

  51. Hosseini SE, Wahid MA, Jamil MM et al (2015) A review on biomass-based hydrogen production for renewable energy supply. Int J Energy Res 39:1597–1615. https://doi.org/10.1002/er.3381

    Article  Google Scholar 

  52. Lee H-S, Vermaas WFJ, Rittmann BE (2010) Biological hydrogen production: prospects and challenges. Trends Biotechnol 28:262–271. https://doi.org/10.1016/J.TIBTECH.2010.01.007

    Article  Google Scholar 

  53. Castellano-hinojosa A, Armato C, Pozo C, González-martínez A (2018) New concepts in anaerobic digestion processes: recent advances and biological aspects. Appl Microbiol Biotechnol 102(12):5065–6076. https://doi.org/10.1007/s00253-018-9039-9

    Article  Google Scholar 

  54. Meegoda JN, Li B, Patel K, Wang LB (2018) A review of the processes, parameters, and optimization of anaerobic digestion. Int J Environ Res Public Health 15:2224. https://doi.org/10.3390/ijerph15102224

    Article  Google Scholar 

  55. Kainthola J, Kalamdhad AS, Goud VV (2019) A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochem 84:81–90. https://doi.org/10.1016/j.procbio.2019.05.023

    Article  Google Scholar 

  56. Kainthola J, Kalamdhad AS, Goud VV (2019) Optimization of methane production during anaerobic co-digestion of rice straw and hydrilla verticillata using response surface methodology. Fuel 235:92–99. https://doi.org/10.1016/j.fuel.2018.07.094

    Article  Google Scholar 

  57. Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99:7928–7940. https://doi.org/10.1016/j.biortech.2008.02.044

    Article  Google Scholar 

  58. Nikolaisen LS, Jensen PD (2013) Biomass feedstocks: categorisation and preparation for combustion and gasification. In: Rosendahl L (ed) Biomass combustion science, technology and engineering. Woodhead Publishing Limited, pp 36-57

  59. Yin C, Rosendahl LA, Kær SK (2008) Grate-firing of biomass for heat and power production. Prog Energy Combust Sci 34:725–754. https://doi.org/10.1016/j.pecs.2008.05.002

    Article  Google Scholar 

  60. Orang N, Tran H (2015) Effect of feedstock moisture content on biomass boiler operation. TAPPI J 14(10):629–637

    Article  Google Scholar 

  61. Boström D, Broström M, Skoglund N et al (2010) Ash transformation chemistry during energy conversion of biomass. Proc Int Conf Impact Fuel Qual Power Prod Environ:85–93

  62. Santos F, Machado G, Faria D, Lima J, Marçal N, Dutra E, Souza G (2017) Productive potential and quality of rice husk and straw for biorefineries. Biomass Convers Biorefinery 7:117–126. https://doi.org/10.1007/s13399-016-0214-x

    Article  Google Scholar 

  63. Mostafa ME, Tang H, Xu J, Chi HY, Xu K, Su S, Hu S, Wang Y, el-Sayed SA, Xiang J (2019) Experimental study of ignition and combustion characteristics of mixed rice straw and sewage sludge solid and hollow spherical pellets in a plasma combustion system. Key Eng Mater 797:327–335. https://doi.org/10.4028/www.scientific.net/kem.797.327

    Article  Google Scholar 

  64. Shah IA, Gou X, Zhang Q, Wu J, Wang E, Liu Y (2018) Experimental study on NOx emission characteristics of oxy-biomass combustion. J Clean Prod 199:400–410. https://doi.org/10.1016/j.jclepro.2018.07.022

    Article  Google Scholar 

  65. Milne TA, Evans RJ, Abatzoglou N (1998) Biomass gasifier “tars”: their nature, formation, and conversion. http://www.doe.gov/bridge/home.html. Accessed 13 June 2019.

  66. Corella J, Toledo JM, Padilla R (2004) Olivine or dolomite as in-bed additive in biomass gasification with air in a fluidized bed: which is better? Energy Fuel 18:713–720. https://doi.org/10.1021/ef0340918

    Article  Google Scholar 

  67. Ma X, Zhao X, Gu J, Shi J (2019) Co-gasification of coal and biomass blends using dolomite and olivine as catalysts. Renew Energy 132:509–514. https://doi.org/10.1016/j.renene.2018.07.077

    Article  Google Scholar 

  68. Abu El-Rub Z, Bramer EA, Brem G (2008) Experimental comparison of biomass chars with other catalysts for tar reduction. Fuel 87:2243–2252. https://doi.org/10.1016/j.fuel.2008.01.004

    Article  Google Scholar 

  69. Wang D, Yuan W, Ji W (2011) Char and char-supported nickel catalysts for secondary syngas cleanup and conditioning. Appl Energy 88:1656–1663. https://doi.org/10.1016/j.apenergy.2010.11.041

    Article  Google Scholar 

  70. Ma Z, Ye J, Zhao C, Zhang Q (2015) Gasification of rice husk in a downdraft gasifier: the effect of equivalence ratio on the gasification performance, properties, and utilization analysis of byproducts of char and tar. BioResources 10(2):2888–2902

    Article  Google Scholar 

  71. Behainne JJR, Martinez JD (2014) Performance analysis of an air-blown pilot fluidized bed gasifier for rice husk. Energy Sustain Dev 18:75–82. https://doi.org/10.1016/j.esd.2013.11.008

    Article  Google Scholar 

  72. Kamble AD, Saxena VK, Chavan PD, Singh BD, Mendhe VA (2019) Petrographic and chemical reactivity assessment of Indian high ash coal with different biomass in fluidized bed co-gasification. J Energy Inst 92:982–1004. https://doi.org/10.1016/j.joei.2018.07.007

    Article  Google Scholar 

  73. Xu C, Hu S, Xiang J, Yang H, Sun L, Su S, Wang B, Chen Q, He L (2014) Kinetic models comparison for steam gasification of coal/biomass blend chars. Bioresour Technol 171:253–259. https://doi.org/10.1016/j.biortech.2014.07.099

    Article  Google Scholar 

  74. Mallick D, Mahanta P, Moholkar VS (2020) Co-gasification of biomass blends: performance evaluation in circulating fluidized bed gasifier. Energy 192:116682. https://doi.org/10.1016/j.energy.2019.116682

    Article  Google Scholar 

  75. Board BR and D (2011) Biomass conversion: challenges for federal research and commercialization. https://biomassboard.gov/pdfs/biomass_conversion_report.pdf. Accessed 10 Dec 2019.

  76. Vieira FR, Romero Luna CM, Arce GLAF, Ávila I (2020) Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk. Biomass Bioenergy 132:105412. https://doi.org/10.1016/j.biombioe.2019.105412

    Article  Google Scholar 

  77. Lee KH, Kang BS, Park YK, Kim JS (2005) Influence of reaction temperature, pretreatment, and a char removal system on the production of bio-oil from rice straw by fast pyrolysis, using a fluidized bed. Energy Fuel 19:2179–2184. https://doi.org/10.1021/ef050015o

    Article  Google Scholar 

  78. Natarajan E, Ganapathy Sundaram E, Material AR, Husk R (2009) Pyrolysis rice husk in fixed bed reactor. WASET 56:504–508

    Google Scholar 

  79. Paethanom A, Yoshikawa K (2012) Influence of pyrolysis temperature on rice husk char characteristics and its tar adsorption capability. Energies 5:4941–4951. https://doi.org/10.3390/en5124941

    Article  Google Scholar 

  80. Maiti S, Dey S, Purakayastha S, Ghosh B (2006) Physical and thermochemical characterization of rice husk char as a potential biomass energy source. Bioresour Technol 97:2065–2070. https://doi.org/10.1016/j.biortech.2005.10.005

    Article  Google Scholar 

  81. Feng D, Zhang Y, Zhao Y, Sun S (2018) Catalytic effects of ion-exchangeable K+ and Ca2+ on rice husk pyrolysis behavior and its gas–liquid–solid product properties. Energy 152:166–177. https://doi.org/10.1016/j.energy.2018.03.119

    Article  Google Scholar 

  82. Nowakowski DJ, Jones JM, Brydson RMD, Ross AB (2007) Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice. Fuel 86:2389–2402. https://doi.org/10.1016/j.fuel.2007.01.026

    Article  Google Scholar 

  83. Wornat MJ, Nelson PF (1992) Effects of ion-exchanged calcium on brown coal tar composition as determined by fourier transform infrared spectroscopy. Energy Fuel 6:136–142. https://doi.org/10.1021/ef00032a004

    Article  Google Scholar 

  84. Ukaew S, Schoenborn J, Klemetsrud B, Shonnard DR (2018) Effects of torrefaction temperature and acid pretreatment on the yield and quality of fast pyrolysis bio-oil from rice straw. J Anal Appl Pyrolysis 129:112–122. https://doi.org/10.1016/j.jaap.2017.11.021

    Article  Google Scholar 

  85. Akubo K, Nahil MA, Williams PT (2018) Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas. J Energy Inst 92(6):1987–1996. https://doi.org/10.1016/j.joei.2018.10.013

    Article  Google Scholar 

  86. Weldekidan H, Strezov V, Town G, Kan T (2018) Production and analysis of fuels and chemicals obtained from rice husk pyrolysis with concentrated solar radiation. Fuel 233:396–403. https://doi.org/10.1016/j.fuel.2018.06.061

    Article  Google Scholar 

  87. Duong TL, Nguyen DT, Nguyen HHM et al (2019) Fast pyrolysis of Vietnamese waste biomass: relationship between biomass composition, reaction conditions, and pyrolysis products, and a strategy to use a biomass mixture as feedstock for bio-oil production. J Mater Cycles Waste Manag 21:624–632. https://doi.org/10.1007/s10163-018-00823-z

    Article  Google Scholar 

  88. Fu Y, Shen Y, Zhang Z et al (2019) Activated bio-chars derived from rice husk via one- and two-step KOH-catalyzed pyrolysis for phenol adsorption. Sci Total Environ 646:1567–1577. https://doi.org/10.1016/j.scitotenv.2018.07.423

    Article  Google Scholar 

  89. Zhang G, Liu H, Wang J, Wu B (2018) Catalytic gasification characteristics of rice husk with calcined dolomite. Energy 165(Part B):1173–1177. https://doi.org/10.1016/j.energy.2018.10.030

    Article  Google Scholar 

  90. Ngamchompoo W (2018) Experimental investigation on rice straw gasification in a cyclone gasifier. BioResources 13:7654–7670. https://doi.org/10.15376/biores.13.4.7654-7670

    Article  Google Scholar 

  91. James RAM, Yuan W, Boyette MD, Wang D (2018) Airflow and insulation effects on simultaneous syngas and biochar production in a top-lit updraft biomass gasifier. Renew Energy 117:116–124. https://doi.org/10.1016/j.renene.2017.10.034

    Article  Google Scholar 

  92. Hu J, Li C, Zhang Q et al (2019) Using chemical looping gasification with Fe2O3/Al2O3 oxygen carrier to produce syngas (H2 +CO) from rice straw. Int J Hydrog Energy 44(6):3382–3386. https://doi.org/10.1016/j.ijhydene.2018.06.147

    Article  Google Scholar 

  93. Li W, Wu S, Wu Y et al (2019) Gasification characteristics of biomass at a high-temperature steam atmosphere. Fuel Process Technol 194:106090. https://doi.org/10.1016/j.fuproc.2019.05.013

    Article  Google Scholar 

  94. Mahapatro A, Mahanta P (2020) Gasification studies of low-grade Indian coal and biomass in a lab-scale pressurized circulating fluidized bed. Renew Energy 150:1151–1159. https://doi.org/10.1016/j.renene.2019.10.038

    Article  Google Scholar 

  95. Zhang H, Luo L, Li W et al (2018) Optimization of mixing ratio of ammoniated rice straw and food waste co-digestion and impact of trace element supplementation on biogas production. J Mater Cycles Waste Manag 20:745–753. https://doi.org/10.1007/s10163-017-0634-0

    Article  Google Scholar 

  96. Kumari D, Singh R (2020) Ultrasonic assisted petha waste water pretreatment of rice straw for optimum production of methane and ethanol using mixed microbial culture. Renew Energy 145:682–690. https://doi.org/10.1016/j.renene.2019.06.082

    Article  Google Scholar 

  97. Fonseca BG, Mateo S, Moya AJ, Roberto IC (2018) Biotreatment optimization of rice straw hydrolyzates for ethanolic fermentation with Scheffersomyces stipitis. Biomass Bioenergy 112:19–28. https://doi.org/10.1016/j.biombioe.2018.02.003

    Article  Google Scholar 

  98. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  Google Scholar 

  99. Kainthola J, Kalamdhad AS, Goud VV, Goel R (2019) Fungal pretreatment and associated kinetics of rice straw hydrolysis to accelerate methane yield from anaerobic digestion. Bioresour Technol 286:121368. https://doi.org/10.1016/j.biortech.2019.121368

    Article  Google Scholar 

  100. Shetty D, Joshi A, Dagar SS et al (2020) Bioaugmentation of anaerobic fungus Orpinomyces joyonii boosts sustainable biomethanation of rice straw without pretreatment. Biomass Bioenergy 138:105546. https://doi.org/10.1016/j.biombioe.2020.105546

    Article  Google Scholar 

  101. Singh A, Bishnoi NR, Bajar S (2014) Enzymatic hydrolysis of microwave alkali pretreated rice husk for ethanol production by Saccharomyces cerevisiae, Scheffersomyces stipitis and their co-culture. Fuel 116:699–702. https://doi.org/10.1016/j.fuel.2013.08.072

    Article  Google Scholar 

  102. Ma K, He M, You H et al (2017) Enhanced fuel ethanol production from rice straw hydrolysate by an inhibitor-tolerant mutant strain of Scheffersomyces stipitis. RSC Adv 7:31180–31188. https://doi.org/10.1039/c7ra04049k

    Article  Google Scholar 

  103. Sakamoto T, Hasunuma T, Hori Y et al (2012) Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain co-displaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J Biotechnol 158:203–210. https://doi.org/10.1016/j.jbiotec.2011.06.025

    Article  Google Scholar 

  104. Liu JC, Chang WJ, Hsu TC et al (2020) Direct fermentation of cellulose to ethanol by Saccharomyces cerevisiae displaying a bifunctional cellobiohydrolase gene from Orpinomyces sp. Y102. Renew Energy (in press). https://doi.org/10.1016/j.renene.2020.05.118

  105. Chatellard L, Marone A, Trably E (2017) Trends and challenges in biohydrogen production from agricultural waste. In: Singh A, Rathore D (eds) Biohydrogen production: sustainability of current technology and future perspective. Springer, India, pp 69–95. https://doi.org/10.1007/978-81-322-3577-4

    Chapter  Google Scholar 

  106. Dinesh GH, Nguyen DD, Ravindran B et al (2020) Simultaneous biohydrogen (H2) and bioplastic (poly-β-hydroxybutyrate-PHB) productions under dark, photo, and subsequent dark and photo fermentation utilizing various wastes. Int J Hydrog Energy 45:5840–5853. https://doi.org/10.1016/j.ijhydene.2019.09.036

    Article  Google Scholar 

  107. Li J, Chi X, Zhang Y, Wang X (2018) Enhanced coproduction of hydrogen and butanol from rice straw by a novel two-stage fermentation process. Int Biodeterior Biodegrad 127:62–68. https://doi.org/10.1016/j.ibiod.2017.11.004

    Article  Google Scholar 

  108. Bundhoo ZMA (2017) Coupling dark fermentation with biochemical or bioelectrochemical systems for enhanced bio-energy production: a review. Int J Hydrog Energy 42:26667–26686. https://doi.org/10.1016/j.ijhydene.2017.09.050

    Article  Google Scholar 

  109. Li XH, Liang DW, Bai YX et al (2014) Enhanced H2 production from corn stalk by integrating dark fermentation and single chamber microbial electrolysis cells with double anode arrangement. Int J Hydrog Energy 39:8977–8982. https://doi.org/10.1016/j.ijhydene.2014.03.065

    Article  Google Scholar 

  110. Dhar BR, Elbeshbishy E, Hafez H, Lee HS (2015) Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell. Bioresour Technol 198:223–230. https://doi.org/10.1016/J.BIORTECH.2015.08.048

    Article  Google Scholar 

  111. Schievano A, Pepé Sciarria T, Gao YC et al (2016) Dark fermentation, anaerobic digestion and microbial fuel cells: an integrated system to valorize swine manure and rice bran. Waste Manag 56:519–529. https://doi.org/10.1016/j.wasman.2016.07.001

    Article  Google Scholar 

  112. Sawatdeenarunat C, Surendra KC, Takara D et al (2015) Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol 178:178–186. https://doi.org/10.1016/j.biortech.2014.09.103

    Article  Google Scholar 

  113. Negi S, Dhar H, Hussain A, Kumar S (2018) Biomethanation potential for co-digestion of municipal solid waste and rice straw: a batch study. Bioresour Technol 254:139–144. https://doi.org/10.1016/j.biortech.2018.01.070

    Article  Google Scholar 

  114. Shen F, Zhong B, Wang Y et al (2019) Cellulolytic microflora pretreatment increases the efficiency of anaerobic co-digestion of rice straw and pig manure. Bioenerg Res 12:703–713. https://doi.org/10.1007/s12155-019-10013-w

    Article  Google Scholar 

  115. Ai P, Chen M, Ran Y et al (2020) Digestate recirculation through co-digestion with rice straw: towards high biogas production and efficient waste recycling. J Clean Prod 263:121441. https://doi.org/10.1016/j.jclepro.2020.121441

    Article  Google Scholar 

  116. Kumar P, Prajapati SK, Malik A, Vijay VK (2019) Evaluation of biomethane potential of waste algal biomass collected from eutrophied lake: effect of source of inocula, co-substrate, and VS loading. J Appl Phycol 31:533–545. https://doi.org/10.1007/s10811-018-1585-0

    Article  Google Scholar 

  117. Srivastava G, Kumar V, Tiwari R et al (2020) Anaerobic co-digestion of defatted microalgae residue and rice straw as an emerging trend for waste utilization and sustainable biorefinery development. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00736-8

  118. Todhanakasem T, Salangsing O, Koomphongse P et al (2019) Zymomonas mobilis biofilm reactor for ethanol production using rice straw hydrolysate under continuous and repeated batch processes. Front Microbiol 10:1–11. https://doi.org/10.3389/fmicb.2019.01777

    Article  Google Scholar 

  119. Brar KK, Agrawal D, Chadha BS, Lee H (2019) Evaluating novel fungal secretomes for efficient saccharification and fermentation of composite sugars derived from hydrolysate and molasses into ethanol. Bioresour Technol 273:114–121. https://doi.org/10.1016/j.biortech.2018.11.004

    Article  Google Scholar 

  120. Tosuner ZV, Taylan GG, Özmıhçı S (2019) Effects of rice husk particle size on biohydrogen production under solid state fermentation. Int J Hydrog Energy 44:18785–18791. https://doi.org/10.1016/j.ijhydene.2018.10.230

    Article  Google Scholar 

  121. Lay CH, Hsu YC, Lin CY, Chen CC (2020) Anaerobic biohydrogen production using rice husk-based biologics. Waste Biomass Valorization 11:1059–1068. https://doi.org/10.1007/s12649-018-00544-2

    Article  Google Scholar 

  122. Li Z, Lu JK, Yang ZX et al (2012) Utilization of white rice bran for production of l-lactic acid. Biomass Bioenergy 39:53–58. https://doi.org/10.1016/j.biombioe.2011.12.039

    Article  Google Scholar 

  123. Shinozaki Y, Kitamoto HK (2011) Ethanol production from ensiled rice straw and whole-crop silage by the simultaneous enzymatic saccharification and fermentation process. J Biosci Bioeng 111:320–325. https://doi.org/10.1016/j.jbiosc.2010.11.003

    Article  Google Scholar 

  124. Wang Y, Cai D, He M et al (2015) Open fermentative production of l-lactic acid using white rice bran by simultaneous saccharification and fermentation. Bioresour Technol 198:664–672. https://doi.org/10.1016/j.biortech.2015.09.010

    Article  Google Scholar 

  125. Watanabe M, Techapun C, Kuntiya A et al (2017) Extracellular protease derived from lactic acid bacteria stimulates the fermentative lactic acid production from the by-products of rice as a biomass refinery function. J Biosci Bioeng 123:245–251. https://doi.org/10.1016/j.jbiosc.2016.08.011

    Article  Google Scholar 

  126. Younas R, Zhang S, Zhang L et al (2016) Lactic acid production from rice straw in alkaline hydrothermal conditions in presence of NiO nanoplates. Catal Today 274:40–48. https://doi.org/10.1016/j.cattod.2016.03.052

    Article  Google Scholar 

  127. Jukonyte R, Zadeike D, Bartkiene E et al (2018) A potential of brown rice polish as a substrate for the lactic acid and bioactive compounds production by the lactic acid bacteria newly isolated from cereal-based fermented products. Lwt 97:323–331. https://doi.org/10.1016/j.lwt.2018.07.012

    Article  Google Scholar 

  128. Bevilaqua DB, Rambo MKD, Rizzetti TM et al (2013) Cleaner production: levulinic acid from rice husks. J Clean Prod 47:96–101. https://doi.org/10.1016/j.jclepro.2013.01.035

    Article  Google Scholar 

  129. Liu BJ, Ren QL (2006) Sorption of levulinic acid onto weakly basic anion exchangers: equilibrium and kinetic studies. J Colloid Interface Sci 294:281–287. https://doi.org/10.1016/j.jcis.2005.07.042

    Article  Google Scholar 

  130. Chen H, Yu B, Jin S (2011) Production of levulinic acid from steam exploded rice straw via solid superacid, S2O82-/ZrO2-SiO2-Sm2O3. Bioresour Technol 102:3568–3570. https://doi.org/10.1016/j.biortech.2010.10.018

    Article  Google Scholar 

  131. Panagiotopoulos IA, Lignos GD, Bakker RR, Koukios EG (2012) Effect of low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis on the production of fermentable substrates and the release of inhibitory compounds. J Clean Prod 32:45–51. https://doi.org/10.1016/j.jclepro.2012.03.019

    Article  Google Scholar 

  132. Madduluri VR, Mandari KK, Velpula V et al (2020) Rice husk-derived carbon-silica supported Ni catalysts for selective hydrogenation of biomass-derived furfural and levulinic acid. Fuel 261:116339. https://doi.org/10.1016/j.fuel.2019.116339

    Article  Google Scholar 

  133. Lin KH, Huang MH, Chang ACC (2013) Liquid phase reforming of rice straw for furfural production. Int J Hydrog Energy 38:15794–15800. https://doi.org/10.1016/j.ijhydene.2013.06.088

    Article  Google Scholar 

  134. Hsu TC, Guo GL, Chen WH, Hwang WS (2010) Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour Technol 101:4907–4913. https://doi.org/10.1016/j.biortech.2009.10.009

    Article  Google Scholar 

  135. Kim JW, Kim KS, Lee JS et al (2011) Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid. Bioresour Technol 102:8992–8999. https://doi.org/10.1016/j.biortech.2011.06.068

    Article  Google Scholar 

  136. Krishania M, Kumar V, Sangwan RS (2018) Integrated approach for extraction of xylose, cellulose, lignin and silica from rice straw. Bioresour Technol Reports 1:89–93. https://doi.org/10.1016/j.biteb.2018.01.001

    Article  Google Scholar 

  137. Huang ZJ, Feng GJ, Lin KP et al (2020) Significant boost in xylose yield and enhanced economic value with one-pot process using deep eutectic solvent for the pretreatment and saccharification of rice straw. Ind Crop Prod 152:112515. https://doi.org/10.1016/j.indcrop.2020.112515

    Article  Google Scholar 

  138. Huang YF, Lo SL (2018) Utilization of rice hull and straw. In: Bao J (ed) Rice Chemistry and Technology, 4th edn. AACC International Press, Elsevier, pp 627–661

    Google Scholar 

  139. Sangon S, Hunt AJ, Attard TM et al (2018) Valorisation of waste rice straw for the production of highly effective carbon based adsorbents for dyes removal. J Clean Prod 172:1128–1139. https://doi.org/10.1016/j.jclepro.2017.10.210

    Article  Google Scholar 

  140. Park JH, Wang JJ, Kim SH et al (2017) Recycling of rice straw through pyrolysis and its adsorption behaviors for Cu and Zn ions in aqueous solution. Colloids Surf A Physicochem Eng Asp 533:330–337. https://doi.org/10.1016/j.colsurfa.2017.08.041

    Article  Google Scholar 

  141. Zhang B, Han X, Gu P et al (2017) Response surface methodology approach for optimization of ciprofloxacin adsorption using activated carbon derived from the residue of desilicated rice husk. J Mol Liq 238:316–325. https://doi.org/10.1016/j.molliq.2017.04.022

    Article  Google Scholar 

  142. Ahmad M, Rajapaksha AU, Lim JE et al (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33. https://doi.org/10.1016/j.chemosphere.2013.10.071

    Article  Google Scholar 

  143. Zareei SA, Ameri F, Dorostkar F, Ahmadi M (2017) Rice husk ash as a partial replacement of cement in high strength concrete containing micro silica: evaluating durability and mechanical properties. Case Stud Constr Mater 7:73–81. https://doi.org/10.1016/j.cscm.2017.05.001

    Article  Google Scholar 

  144. Quispe I, Navia R, Kahhat R (2019) Life cycle assessment of rice husk as an energy source A Peruvian case study. J Clean Prod 209:1235–1244. https://doi.org/10.1016/j.jclepro.2018.10.312

    Article  Google Scholar 

  145. Rukzon S, Chindaprasirt P (2014) Use of ternary blend of Portland cement and two pozzolans to improve durability of high-strength concrete. KSCE J Civ Eng 18:1745–1752. https://doi.org/10.1007/s12205-014-0461-y

    Article  Google Scholar 

  146. Jittin V, Bahurudeen A, Ajinkya SD (2020) Utilisation of rice husk ash for cleaner production of different construction products. J Clean Prod 263:121578. https://doi.org/10.1016/j.jclepro.2020.121578

    Article  Google Scholar 

  147. Rattanachu P, Toolkasikorn P, Tangchirapat W et al (2020) Performance of recycled aggregate concrete with rice husk ash as cement binder. Cem Concr Compos 108:103533. https://doi.org/10.1016/j.cemconcomp.2020.103533

    Article  Google Scholar 

  148. Ganesan K, Rajagopal K, Thangavel K (2008) Rice husk ash blended cement: assessment of optimal level of replacement for strength and permeability properties of concrete. Constr Build Mater 22(8):1675–1683. https://doi.org/10.1016/j.conbuildmat.2007.06.011

    Article  Google Scholar 

  149. Chindaprasirt P, Rukzon S (2015) Strength and chloride resistance of the blended Portland cement mortar containing rice husk ash and ground river sand. Mater Struct 48:3771–3777. https://doi.org/10.1617/s11527-014-0438-9

    Article  Google Scholar 

  150. Chatveera B, Lertwattanaruk P (2011) Durability of conventional concretes containing black rice husk ash. J Environ Manag 92:59–66. https://doi.org/10.1016/j.jenvman.2010.08.007

    Article  Google Scholar 

  151. Ferraro RM, Nanni A (2012) Effect of off-white rice husk ash on strength, porosity, conductivity and corrosion resistance of white concrete. Constr Build Mater 31:220–225. https://doi.org/10.1016/j.conbuildmat.2011.12.010

    Article  Google Scholar 

  152. Dai YM, Chen KT, Chen CC (2014) Study of the microwave lipid extraction from microalgae for biodiesel production. Chem Eng J 250:267–273. https://doi.org/10.1016/j.cej.2014.04.031

    Article  Google Scholar 

  153. Moayedi H, Aghel B, Abdullahi MM et al (2019) Applications of rice husk ash as green and sustainable biomass. J Clean Prod 237:117851. https://doi.org/10.1016/j.jclepro.2019.117851

    Article  Google Scholar 

  154. Li M, Zheng Y, Chen Y, Zhu X (2014) Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk. Bioresour Technol 154:345–348. https://doi.org/10.1016/j.biortech.2013.12.070

    Article  Google Scholar 

  155. Chen KT, Wang JX, Dai YM et al (2013) Rice husk ash as a catalyst precursor for biodiesel production. J Taiwan Inst Chem Eng 44:622–629. https://doi.org/10.1016/j.jtice.2013.01.006

    Article  Google Scholar 

  156. Zhao C, Yang L, Xing S et al (2018) Biodiesel production by a highly effective renewable catalyst from pyrolytic rice husk. J Clean Prod 199:772–780. https://doi.org/10.1016/j.jclepro.2018.07.242

    Article  Google Scholar 

  157. Yanase S, Hasunuma T, Yamada R et al (2010) Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes. Appl Microbiol Biotechnol 88:381–388. https://doi.org/10.1007/s00253-010-2784-z

    Article  Google Scholar 

  158. Balan V (2014) Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol:1–31. https://doi.org/10.1155/2014/463074

Download references

Funding

This work is funded by the Ministry of Higher Education, Malaysia, under the Fundamental Research Grant Scheme (FRGS/1/2014/SG05/IUKL/02/1). The funding body is not involved in the writing and editing of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SC conceptualized, wrote, and edited the manuscript. SHK wrote, reviewed, and edited the manuscript.

Corresponding author

Correspondence to Sylvia Chieng.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chieng, S., Kuan, S.H. Harnessing bioenergy and high value–added products from rice residues: a review. Biomass Conv. Bioref. 12, 3547–3571 (2022). https://doi.org/10.1007/s13399-020-00891-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00891-y

Keywords

Navigation