Skip to main content
Log in

Enhanced lactic acid production from food waste in dark fermentation with indigenous microbiota

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This study investigated the effects of pH, total solids (TS) content, and enzymatic pretreatment on lactic acid (LA) production from food waste with indigenous microbiota. A multilevel factorial design was applied to all the essential factors for making LA production the most efficient and productive. The experimental data revealed that all the tested factors had a significant effect on the LA produced. The production of LA was progressively increased with the increase of TS content from 50 to 150 g-TS/L. With enzymatic pretreatment, the maximum production of volatile fatty acids (VFAs) and LA was, respectively, 26.17 g/L and 12.87 g/L at a pH of 6 and 150 g-TS/L. A LA yield of 0.09 g/g-TS with a productivity of 1.29 g/L day was achieved at mesophilic temperature of 37 °C and optimal operating conditions. Interestingly, the production of VFAs was 2.6-fold, and LA was 3-fold higher compared to those obtained with untreated food waste under same conditions. These results showed that enzymatically pretreated food waste at TS 15% can provide high production of VFAs and LA. The high selectivity of LA in the fermentative product, along with others, could make downstream processing economical. The multilevel factorial design predicted optimum conditions and presented a good agreement with a mean error of less than 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cizeikiene D, Juodeikiene G, Damasius J (2018) Use of wheat straw biomass in production of L-lactic acid applying biocatalysis and combined lactic acid bacteria strains belonging to the genus Lactobacillus. Biocatal Agric Biotechnol 15:185–191. https://doi.org/10.1016/j.bcab.2018.06.015

    Article  Google Scholar 

  2. Yousuf A, Bastidas-Oyanedel J-R, Schmidt JE (2018) Effect of total solid content and pretreatment on the production of lactic acid from mixed culture dark fermentation of food waste. Waste Manag 77:516–521. https://doi.org/10.1016/j.wasman.2018.04.035

    Article  Google Scholar 

  3. Braguglia CM, Gallipoli A, Gianico A, Pagliaccia P (2018) Anaerobic bioconversion of food waste into energy: a critical review. Bioresour Technol 248(Pt A):37–56. https://doi.org/10.1016/j.biortech.2017.06.145

    Article  Google Scholar 

  4. Farouk RY, Li L, Wang Y, Li Y, Melak S (2020) Influence of pretreatment and pH on the enhancement of hydrogen and volatile fatty acids production from food waste in the semi-continuously running reactor. Int J Hydrog Energy 45(6):3729–3738. https://doi.org/10.1016/j.ijhydene.2019.07.236

    Article  Google Scholar 

  5. de Oliveira RA, Schneider R, Rossell CEV, Maciel Filho R, Venus J (2019) Polymer grade l-lactic acid production from sugarcane bagasse hemicellulosic hydrolysate using Bacillus coagulans. Bioresour Technol Rep 6:26–31. https://doi.org/10.1016/j.biteb.2019.02.003

    Article  Google Scholar 

  6. López-Gómez JP, Alexandri M, Schneider R, Latorre-Sánchez M, Lozano CC, Venus J (2020) Organic fraction of municipal solid waste for the production of L-lactic acid with high optical purity. J Clean Prod 247:119165. https://doi.org/10.1016/j.jclepro.2019.119165

    Article  Google Scholar 

  7. Abdel-Rahman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156(4):286–301. https://doi.org/10.1016/j.jbiotec.2011.06.017

    Article  Google Scholar 

  8. Ouyang J, Ma R, Zheng Z, Cai C, Zhang M, Jiang T (2013) Open fermentative production of L-lactic acid by Bacillus sp. strain NL01 using lignocellulosic hydrolyzates as low-cost raw material. Bioresour Technol 135:475–480. https://doi.org/10.1016/j.biortech.2012.09.096

    Article  Google Scholar 

  9. Neu A-K, Pleissner D, Mehlmann K, Schneider R, Puerta-Quintero GI, Venus J (2016) Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l (+)-lactic acid production. Bioresour Technol 211:398–405. https://doi.org/10.1016/j.biortech.2016.03.122

    Article  Google Scholar 

  10. Guo X, Li H, Yan H, Dai Y, Luo X, Yang X, Kong L (2019) Production of organic carboxylic acids by hydrothermal conversion of electron beam irradiation pretreated wheat straw. Biomass Convers and Biorefi:1–10. https://doi.org/10.1007/s13399-019-00471-9

  11. Li X, Chen Y, Zhao S, Chen H, Zheng X, Luo J, Liu Y (2015) Efficient production of optically pure L-lactic acid from food waste at ambient temperature by regulating key enzyme activity. Water Res 70:148–157. https://doi.org/10.1016/j.watres.2014.11.049

    Article  Google Scholar 

  12. Liang S, McDonald AG, Coats ER (2014) Lactic acid production with undefined mixed culture fermentation of potato peel waste. Waste Manag 34(11):2022–2027. https://doi.org/10.1016/j.wasman.2014.07.009

    Article  Google Scholar 

  13. Tang J, Wang X, Hu Y, Zhang Y, Li Y (2016) Lactic acid fermentation from food waste with indigenous microbiota: effects of pH, temperature and high OLR. Waste Manag 52:278–285. https://doi.org/10.1016/j.wasman.2016.03.034

    Article  Google Scholar 

  14. Pleissner D, Demichelis F, Mariano S, Fiore S, Gutiérrez IMN, Schneider R, Venus J (2017) Direct production of lactic acid based on simultaneous saccharification and fermentation of mixed restaurant food waste. J Clean Prod 143:615–623. https://doi.org/10.1016/j.jclepro.2016.12.065

    Article  Google Scholar 

  15. Givry S, Prevot V, Duchiron F (2008) Lactic acid production from hemicellulosic hydrolyzate by cells of Lactobacillus bifermentans immobilized in Ca-alginate using response surface methodology. World J Microb Biot 24:745–752. https://doi.org/10.1007/s11274-007-9534-0

  16. Guo W, Jia W, Li Y, Chen S (2010) Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocellulosics. Appl Biochem Biotechnol 161(1-8):124–136. https://doi.org/10.1007/s12010-009-8857-8

    Article  Google Scholar 

  17. Peinemann JC, Demichelis F, Fiore S, Pleissner D (2019) Techno-economic assessment of non-sterile batch and continuous production of lactic acid from food waste. Bioresour Technol:121631. https://doi.org/10.1016/j.biortech.2019.121631

  18. Chen C-C, Lan C-C, Pan C-L, Huang M-Y, Chew C-H, Hung C-C, Chen P-H, Lin H-TV (2019) Repeated-batch lactic acid fermentation using a novel bacterial immobilization technique based on a microtube array membrane. Process Biochem 87:25–32. https://doi.org/10.1016/j.procbio.2019.09.016

    Article  Google Scholar 

  19. Shen X, Xia L (2006) Lactic acid production from cellulosic material by synergetic hydrolysis and fermentation. Appl Biochem Biotechnol 133(3):251–262. https://doi.org/10.1385/ABAB:133:3:251

    Article  Google Scholar 

  20. Dumbrepatil A, Adsul M, Chaudhari S, Khire J, Gokhale D (2008) Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Appl Environ Microbiol 74(1):333–335. https://doi.org/10.1128/AEM.01595-07

    Article  Google Scholar 

  21. Bernardo MP, Coelho LF, Sass DC, Contiero J (2016) L-(+)-Lactic acid production by Lactobacillus rhamnosus B103 from dairy industry waste. Braz J Microbiol 47(3):640–646. https://doi.org/10.1016/j.bjm.2015.12.001

    Article  Google Scholar 

  22. Nguyen CM, Kim J-S, Hwang HJ, Park MS, Choi GJ, Choi YH, Jang KS, Kim J-C (2012) Production of L-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli. Bioresour Technol 110:552–559. https://doi.org/10.1016/j.biortech.2012.01.079

    Article  Google Scholar 

  23. Hassan SE-D, Abdel-Rahman MA, Roushdy MM, Azab MS, Gaber MA (2019) Effective biorefinery approach for lactic acid production based on co-fermentation of mixed organic wastes by Enterococcus durans BP130. Biocatal Agric Biotechnol:101203. https://doi.org/10.1016/j.bcab.2019.101203

  24. Gullon B, Yánez R, Alonso JL, Parajó J (2008) L-Lactic acid production from apple pomace by sequential hydrolysis and fermentation. Bioresour Technol 99(2):308–319. https://doi.org/10.1016/j.biortech.2006.12.018

    Article  Google Scholar 

  25. Lu Z, He F, Shi Y, Lu M, Yu L (2010) Fermentative production of L (+)-lactic acid using hydrolyzed acorn starch, persimmon juice and wheat bran hydrolysate as nutrients. Bioresour Technol 101(10):3642–3648. https://doi.org/10.1016/j.biortech.2009.12.119

    Article  Google Scholar 

  26. Hetényi K, Németh Á, Sevella B (2011) Investigation and modeling of lactic acid fermentation on wheat starch via SSF, CHF and SHF technology. Period Polytec Chem Eng 55(1):11–16. https://doi.org/10.3311/pp.ch.2011-1.02

  27. Laopaiboon P, Thani A, Leelavatcharamas V, Laopaiboon L (2010) Acid hydrolysis of sugarcane bagasse for lactic acid production. Bioresour Technol 101(3):1036–1043. https://doi.org/10.1016/j.biortech.2009.08.091

    Article  Google Scholar 

  28. Moestedt J, Westerholm M, Isaksson S, Schnürer A (2020) Inoculum source determines acetate and lactate production during anaerobic digestion of sewage sludge and food waste. Bioengineering 7(1):3. https://doi.org/10.3390/bioengineering7010003

    Article  Google Scholar 

  29. Elbeshbishy E, Dhar BR, Nakhla G, Lee H-S (2017) A critical review on inhibition of dark biohydrogen fermentation. Renew Sust Energ Rev 79:656–668. https://doi.org/10.1016/j.rser.2017.05.075

    Article  Google Scholar 

  30. Thakur A, Panesar PS, Saini MS (2019) Optimization of process parameters and estimation of kinetic parameters for lactic acid production by Lactobacillus casei MTCC 1423. Biomass Conversion and Biorefinery 9(2):253–266. https://doi.org/10.1007/s13399-018-0347-1

    Article  Google Scholar 

  31. Wang K, Yin J, Shen D, Li N (2014) Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. Bioresour Technol 161:395–401. https://doi.org/10.1016/j.biortech.2014.03.088

    Article  Google Scholar 

  32. Jiang J, Zhang Y, Li K, Wang Q, Gong C, Li M (2013) Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Bioresour Technol 143:525–530. https://doi.org/10.1016/j.biortech.2013.06.025

    Article  Google Scholar 

  33. Li R, Chen S, Li X (2010) Biogas production from anaerobic co-digestion of food waste with dairy manure in a two-phase digestion system. Appl Biochem Biotechnol 160(2):643–654. https://doi.org/10.1007/s12010-009-8533-z

    Article  Google Scholar 

  34. Bretón-Toral A, Trejo-Estrada S, McDonald A (2016) Lactic acid production from potato peel waste, spent coffee grounds and almond shells with undefined mixed cultures isolated from coffee mucilage from Coatepec Mexico. Ferment Technol 6:1–6. https://doi.org/10.4172/2167-7972.1000139

    Article  Google Scholar 

  35. Saritha M, Arora A (2012) Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian J Microbiol 52(2):122–130. https://doi.org/10.1007/s12088-011-0199-x

    Article  Google Scholar 

  36. Ohkouchi Y, Inoue Y (2006) Direct production of L (+)-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011. Bioresour Technol 97(13):1554–1562. https://doi.org/10.1016/j.biortech.2005.06.004

    Article  Google Scholar 

  37. Sakai K, Yamanami T (2006) Thermotolerant Bacillus licheniformis TY7 produces optically active L-lactic acid from kitchen refuse under open condition. J Biosci Bioeng 102(2):132–134. https://doi.org/10.1263/jbb.102.132

    Article  Google Scholar 

  38. Adsul MG, Varma AJ, Gokhale DV (2007) Lactic acid production from waste sugarcane bagasse derived cellulose. Green Chem 9(1):58–62. https://doi.org/10.1039/b605839f

    Article  Google Scholar 

  39. Secchi N, Giunta D, Pretti L, García MR, Roggio T, Mannazzu I, Catzeddu P (2012) Bioconversion of ovine scotta into lactic acid with pure and mixed cultures of lactic acid bacteria. J Ind Microbiol Biotechnol 39(1):175–181. https://doi.org/10.1007/s10295-011-1013-9

    Article  Google Scholar 

  40. John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74(3):524–534. https://doi.org/10.1007/s00253-006-0779-6

    Article  Google Scholar 

  41. Tang J, Wang XC, Hu Y, Zhang Y, Li Y (2017) Effect of pH on lactic acid production from acidogenic fermentation of food waste with different types of inocula. Bioresour Technol 224:544–552. https://doi.org/10.1016/j.biortech.2016.11.111

    Article  Google Scholar 

  42. Bonk F, Bastidas-Oyanedel J-R, Yousef AF, Schmidt JE (2017) Exploring the selective lactic acid production from food waste in uncontrolled pH mixed culture fermentations using different reactor configurations. Bioresour Technol 238:416–424. https://doi.org/10.1016/j.biortech.2017.04.057

    Article  Google Scholar 

  43. Demichelis F, Pleissner D, Fiore S, Mariano S, Gutiérrez IMN, Schneider R, Venus J (2017) Investigation of food waste valorization through sequential lactic acid fermentative production and anaerobic digestion of fermentation residues. Bioresour Technol 241:508–516. https://doi.org/10.1016/j.biortech.2017.05.174

    Article  Google Scholar 

  44. Campuzano R, González-Martínez S (2016) Characteristics of the organic fraction of municipal solid waste and methane production: a review. Waste Manag 54:3–12. https://doi.org/10.1016/j.wasman.2016.05.016

    Article  Google Scholar 

  45. Hach (2002) Water quality: determination of the chemical oxygen demand index (ST-COD)-small-scale sealed-tube method. 1 edn. ISO Geneva.

  46. APHA American Public Health Association et al (1920) Standard methods for the examination of water and wastewater. American Public Health Association.

  47. Zhou M, Yan B, Wong JW, Zhang Y (2018) Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Bioresour Technol 248:68–78. https://doi.org/10.1016/j.biortech.2017.06.121

    Article  Google Scholar 

  48. Feng K, Li H, Zheng C (2018) Shifting product spectrum by pH adjustment during long-term continuous anaerobic fermentation of food waste. Bioresour Technol 270:180–188. https://doi.org/10.1016/j.biortech.2018.09.035

    Article  Google Scholar 

  49. Hofvendahl K, Hahn–Hägerdal B (2000) Factors affecting the fermentative lactic acid production from renewable resources1. Enzym Microb Technol 26 (2-4):87-107. https://doi.org/10.1016/S0141-0229(99)00155-6

  50. Ghaly A, Tango M, Mahmoud N, Avery A (2004) Batch propagation of Lactobacillus helveticus for production of lactic acid from lactose concentrated cheese whey with microaeration and nutrient supplementation. World J Microbiol Biotechnol 20(1):65–75. https://doi.org/10.1023/B:WIBI.0000013313.44873.83

    Article  Google Scholar 

  51. Bahry H, Abdalla R, Pons A, Taha S, Vial C (2019) Optimization of lactic acid production using immobilized Lactobacillus Rhamnosus and carob pod waste from the Lebanese food industry. J Biotechnol 306:81–88. https://doi.org/10.1016/j.jbiotec.2019.09.017

    Article  Google Scholar 

  52. Panesar PS, Kennedy JF, Knill CJ, Kosseva M (2010) Production of L (+) lactic acid using Lactobacillus casei from whey. Braz Arch Biol Technol 53(1):219–226. https://doi.org/10.1590/S1516-89132010000100027

    Article  Google Scholar 

  53. Ding S, Tan T (2006) L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies. Process Biochem 41(6):1451–1454. https://doi.org/10.1016/j.procbio.2006.01.014

    Article  Google Scholar 

  54. Staley BF, Francis L, Barlaz MA (2011) Effect of spatial differences in microbial activity, pH, and substrate levels on methanogenesis initiation in refuse. Appl Environ Microbiol 77(7):2381–2391. https://doi.org/10.1128/AEM.02349-10

    Article  Google Scholar 

  55. Zhang P, Chen Y, Zhou Q, Zheng X, Zhu X, Zhao Y (2010) Understanding short-chain fatty acids accumulation enhanced in waste activated sludge alkaline fermentation: kinetics and microbiology. Environ Sci Technol 44(24):9343–9348. https://doi.org/10.1021/es102878m

    Article  Google Scholar 

  56. Li X, Chen H, Hu L, Yu L, Chen Y, Gu G (2011) Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal. Environ Sci Technol 45(5):1834–1839. https://doi.org/10.1021/es1031882

    Article  Google Scholar 

  57. Wainaina S, Lukitawesa, Kumar Awasthi M, Taherzadeh MJ (2019) Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: a critical review. Bioengineered 10(1):437–458. https://doi.org/10.1080/21655979.2019.1673937

    Article  Google Scholar 

  58. Kim KI, Kim WK, Seo DK, Yoo IS, Kim EK, Yoon HH (2003) Production of lactic acid from food wastes. In: Biotechnology for Fuels and Chemicals. Springer, pp 637-647.

  59. Wang XQ, Wang QH, Zhi Ma H, Yin W (2009) Lactic acid fermentation of food waste using integrated glucoamylase production. J Chem Technol Biotechnol 84(1):139–143. https://doi.org/10.1002/jctb.2007

    Article  Google Scholar 

Download references

Funding

The work was financially supported by Khalifa University for Science and Technology, Abu Dhabi, UAE, under the grant no CIRA-2018-27.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashfaq Ahmad or Fawzi Banat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A., Banat, F. & Taher, H. Enhanced lactic acid production from food waste in dark fermentation with indigenous microbiota. Biomass Conv. Bioref. 12, 3425–3434 (2022). https://doi.org/10.1007/s13399-020-00801-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00801-2

Keywords

Navigation