Skip to main content

Advertisement

Log in

A cleaner process for conversion of invasive weed (Prosopis juliflora) into energy-dense fuel: kinetics, energy, and exergy analysis of pyrolysis process

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this paper, bio-oil production, kinetics analysis, and exergy analysis of Prosopis juliflora pyrolysis are reported. The biomass was segregated into two different particle sizes (< 0.5 mm and > 2.0 mm). Elemental analysis and higher heating value of Prosopis juliflora biomass were estimated. Thermogravimetric analysis of biomass was performed at 5 different heating rates of (5 °C min−1, 10 °C min−1, 15 °C min−1, 20 °C min−1, 25 °C min−1). Thermal degradation of Prosopis juliflora biomass was performed at different temperature ranging from 400 °C, 450 °C, 500 °C, 550 °C to 600 °C. The maximum liquid yield was 17.4% obtained at 500 °C with 0.5 mm particle size. Gas chromatography-mass spectrometry analysis of the Prosopis juliflora liquid phase showed the presence of petroleum compounds. Iso-conversion method is used to establish the kinetic parameters. The mean activation energies obtained from the Kissinger, Kissinger-Akahira-Sunose, Ozawa-Flynn-Wall, and Friedman model are 107.583 kJ mol−1, 138.78 kJ mol−1,145.36 kJ mol−1, and 157.21 kJ mol−1 respectively. The maximum exergy efficiency for pyro-gas was 54.92%, with a particle size of < 0.5 mm at 600 °C. The present study shows that hazardous material like Prosopis juliflora can be converted into energy-dense fuel, thereby paving way for mitigation of the toxic weed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

Pre-exponential factor, min−1

En:

Energy of 1 kg biomass, kJ

Ex:

Exergy of 1 kg biomass, kJ

E a :

Activation energy, J mol−1

R :

Gas constant, J mol K−1

C p :

Constant pressure-specific heat capacity

T :

Temperature, °C

P :

Pressure, Pa

H :

Specific enthalpy, kJ kmol−1

S :

Specific entropy, kJ kmol−1

X i :

Mole fraction of ith species

ex:

Standard specific exergy, kJ kmol−1

β :

Heating rate

Ƞ:

Energy efficiency or percentage

Ψ:

Exergy efficiency or percentage

α:

Conversion rate

Ki:

Kinetic energy

Po:

Potential energy

Ph:

Physical energy

Ch:

Chemical energy

O:

Ambient condition

I:

Initial biomass

F:

Final biomass

Heat:

Related to heat

t:

Biomass sample at time

T:

Related to temperature

Gas:

Related to gas

Biomass:

Related to biomass

LHV:

Low heating value, kJ kg−1

HHV:

High heating value, kJ kg−1

PJ:

Prosopis juliflora

KM:

Kissinger model

KASM:

Kissinger-Akahira-Sunose model

OFWM:

Ozawa-Flynn-Wall model

FM:

Friedman model

References

  1. Ramli T, Ali A, Sri Rachmania J, Susianto (2019) Production of liquid fuel from plastic waste using integrated pyrolysis method with refinery distillation bubble cap plate column. Energy Rep 5:70–77. https://doi.org/10.1016/j.egyr.2018.11.004

    Article  Google Scholar 

  2. Zubrik A, Matik M, Hredzák S, Lovás M, Danková Z, Kováčová M, Briančin J (2016) Preparation of chemically activated carbon from waste biomass by single-stage and two-stage pyrolysis. J Clean Prod 143:643–653. https://doi.org/10.1016/j.jclepro.2016.12.061

    Article  Google Scholar 

  3. Lin X, Zhang Z, Sun J, Wang Q, Pittman C, P.. (2018) Catalytic fast pyrolysis of a wood-plastic composite with metal oxides as catalysts. Waste Manag 79:38–47. https://doi.org/10.1016/j.wasman.2018.07.021

    Article  Google Scholar 

  4. Hernando H, Moreno I, Fermoso J, Hernandez C, Pizarro P, Coronado J, Cejika J, Serrano D (2017) Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides. Biomass Convers Biorefin 7:289–304. https://doi.org/10.1007/s13399-017-0266-6

    Article  Google Scholar 

  5. Wang H, Xia Q, Liu H (2019a) Quick estimation of f(E) in the distributed activation energy model (DAEM): an inverse problem approach. J Math Chem 57:1949–1972. https://doi.org/10.1007/s10910-019-01044-x

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang S, Yuan C, Esakkimuthu S, Xu L, Cao B, Abomohra A, Qian L, Liu L, Hu Y (2019b) Catalytic pyrolysis of waste clay oil to produce high-quality biofuel. J Anal Appl Pyrolysis 141:104633. https://doi.org/10.1016/j.jaap.2019.104633

    Article  Google Scholar 

  7. Drobíková K, Vallová S, Motyka O, Kutláková KM, Plachá D, Seidlerová J (2018) Effects of binder choice in converter and blast furnace sludge briquette preparation: environmental and practical implications. Waste Manag 79:30–37. https://doi.org/10.1016/j.wasman.2018.06.051

    Article  Google Scholar 

  8. Lam SS, Mahari WAW, Jusoh A, Chong CT, Lee CL, Chased HA (2017) Pyrolysis using microwave absorbents as reaction bed: an improved approach to transform used frying oil into biofuel product with desirable properties. J Clean Prod 147:263–272. https://doi.org/10.1016/j.jclepro.2017.01.085

    Article  Google Scholar 

  9. Kalargaris I, Tian G, Gu S (2017) The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine. Energy. 131:179–185. https://doi.org/10.1016/j.energy.2017.05.024

    Article  Google Scholar 

  10. Zhang B, Zhong Z, Zhang J, Ruan R (2018) Catalytic fast co-pyrolysis of biomass and fusel alcohol to enhance aromatic hydrocarbon production over ZSM-5 catalyst in a fluidized bed reactor. J Anal Appl Pyrolysis 133:147–153. https://doi.org/10.1016/j.jaap.2018.04.009

    Article  Google Scholar 

  11. Lim CH, Yakub Mohammed I, Abdalla Abakr Y, Kabir Kazi F, Yusup S, Loong LH (2016) Novel input-output prediction approach for biomass pyrolysis. J Clean Prod 136:51–61. https://doi.org/10.1016/j.jclepro.2016.04.141

    Article  Google Scholar 

  12. Blanco A, Chejne F (2016) Modeling and simulation of biomass fast pyrolysis in a fluidized bed reactor. J Anal Appl Pyrolysis 318:105–114. https://doi.org/10.1016/j.jaap.2016.01.003

    Article  Google Scholar 

  13. Antoniou N, Zabaniotou A (2015) Experimental proof of concept for a sustainable End of Life Tyres pyrolysis with energy and porous materials production. J Clean Prod 101:323–326. https://doi.org/10.1016/j.jclepro.2015.03.101

    Article  Google Scholar 

  14. Wang H, Liu H (2019) Distribution-free estimation of f(E) in the distributed activation energy model based on matrix singular value decomposition method. Chem Pap 73:1893–1902. https://doi.org/10.1007/s11696-019-00742-9

    Article  Google Scholar 

  15. Gonzalez-Quiroga A, Van Geem KM, Marin GB (2017) Towards first-principles based kinetic modeling of biomass fast pyrolysis. Biomass Conv Bioref 7:305–317. https://doi.org/10.1007/s13399-017-0251-0

    Article  Google Scholar 

  16. Rincon F, Muñoz J, Ramírez P, Galan H, Carmen Alfaro M (2014) Physicochemical and rheological characterization of Prosopis juliflora seed gum aqueous dispersions. Food Hydrocoll 35:348–357. https://doi.org/10.1016/j.foodhyd.2013.06.013

    Article  Google Scholar 

  17. García SG, Gullón B, Rivas S, Feijoo G, Teresa Moreira M (2016) Environmental performance of biomass refining into high-added value compounds. J Clean Prod 120:170–180. https://doi.org/10.1016/j.jclepro.2016.02.015

    Article  Google Scholar 

  18. Shirke PA, Pathre UV (2004) Influence of leaf-to-air vapour pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. J Exp Bot 55:2111–2120. https://doi.org/10.1093/jxb/erh229

    Article  Google Scholar 

  19. Midhun Prasad K, Murugavelh S (2019) Co-pyrolysis of juliflora biomass with low density polyethylene for bio-oil synthesis. Energy Sources:1–16. https://doi.org/10.1080/15567036.2019.1635232

  20. Pravin Kumar, S.A., Nagarajan, R., Midhun Prasad, K., Anand, B., Murugavelh, S., 2019. Thermogravimetric study and kinetics of banana peel pyrolysis: a comparison of ‘model-free’ methods. Biofuels 0, 1–10. https://doi.org/10.1080/17597269.2019.1647375

  21. Johansson A, Sandström L, Öhrman O, Jilvero H (2018) Co-pyrolysis of woody biomass and plastic waste in both analytical and pilot scale. J Anal Appl Pyrolysis 134:102–113. https://doi.org/10.1016/j.jaap.2018.05.015

    Article  Google Scholar 

  22. Kothari K, Shah AB, Murugavelh S (2015) Bio-oil production: pyrolysis of saw dust in an auger reactor. Int J ChemTech Res 8:349–357. https://doi.org/10.1515/ijcre-2016-0133

    Article  Google Scholar 

  23. Mishra, R,K., Mohanty, K., 2018. Pyrolysis kinetics and thermal behaviour of waste sawdust biomass using thermogravimetric analysis. Bioresour Technol 251, 63-74. doi: https://doi.org/10.1016/j.biortech.2017.12.029.

  24. Sophonrat N, Sandström L, Johansson AC, Yang W (2017) Co-pyrolysis of mixed plastics and cellulose: an interaction study by Py-GC×GC/MS. Energy Fuel 31:11078–11090. https://doi.org/10.1021/acs.energyfuels.7b01887

    Article  Google Scholar 

  25. Wang SR, Dai GX, Yang HP, Luo ZY (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86. https://doi.org/10.1016/j.pecs.2017.05.004

    Article  Google Scholar 

  26. Parvez AM, Mujtaba IM, Tao WU (2016) Energy exergy and environmental analyses of conventional, steam and CO2- enhanced rice straw gasification. Energy. 94:579–588. https://doi.org/10.1016/j.energy.2015.11.022

    Article  Google Scholar 

  27. Gómez N, Rosas JG, Cara J, Martínez O, Alburquerque JA, Sánchez ME (2016) Slow pyrolysis of relevant biomasses in the Mediterranean basin. Part 1. Effect of temperature on process performance on a pilot scale. J Clean Prod 120:181–190. https://doi.org/10.1016/j.jclepro.2014.10.082

    Article  Google Scholar 

Download references

Funding

This research work was finically supported by (SERB) Science and Engineering Research Board, Science and Engineering Research, under the ECR scheme (ECR/2016/001304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somasundaram Murugavelh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, N., Murugavelh, S. A cleaner process for conversion of invasive weed (Prosopis juliflora) into energy-dense fuel: kinetics, energy, and exergy analysis of pyrolysis process. Biomass Conv. Bioref. 12, 3067–3080 (2022). https://doi.org/10.1007/s13399-020-00747-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-020-00747-5

Keywords

Navigation