Skip to main content

Advertisement

Log in

Valorization of post-extraction biomass residues as carriers of bioavailable micronutrients for plants and livestock

  • Review Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The potential of biosorption as a process of ions binding from solutions has not yet been fully exploited. So far, the works have focused predominantly on removing ions (heavy metals or dyes) from the solutions, mainly on a laboratory scale. The surface of biomass is rich in functional groups that can bind various ions, including microelements. Biomass enriched in this way can be a carrier of important nutrients for plants and animals. The paper aims to verify the possibility of using plant biomass—post-extraction residues as carriers of microelements for fertilization and nutritional purposes. A literature analysis was carried out concerning the application of biosorption for biomass valorization; in particular, the degree of biomass enrichment and the bioavailability of microelement preparations obtained were examined. Valorization of post-extraction residues is a part of the circular economy concept; it minimizes waste generation and enables the recovery of materials for other purposes. This application of biosorption is a new trend that has the potential to be used in the production of new fertilizers and supplements for precision agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

R&D:

Research and development

EDTA:

Ethylenediaminetetraacetic acid

ppm:

Parts per million

CuZnSOD:

Peroxide dismutase and cytochrome oxidase

MnSOD:

Manganese-dependent superoxide dismutase

DNA:

Deoxyribonucleic acid

RNA:

Ribonucleic acid

FTIR:

Fourier-transform infrared spectroscopy

AAC:

Amino acids

References

  1. Michalak I, Witek-Krowiak A, Chojnacka K, Bhatnagar A (2015) Advances in biosorption of microelements – the starting point for the production of new agrochemicals. Rev Inorg Chem 35:115–133. https://doi.org/10.1515/revic-2015-0003

    Article  Google Scholar 

  2. Chojnacka K (2005) Biosorption of Cr 3 + , Cd 2 + and Cu 2 + ions by blue – green algae Spirulina sp .: kinetics , equilibrium and the mechanism of the process. 59:75–84. https://doi.org/10.1016/j.chemosphere.2004.10.005

  3. Gupta NK, Sengupta A, Gupta A et al (2018) Biosorption-an alternative method for nuclear waste management: a critical review. J Environ Chem Eng 6:2159–2175. https://doi.org/10.1016/J.JECE.2018.03.021

    Article  Google Scholar 

  4. Okenicová L, Žemberyová M, Procházková S (2016) Biosorbents for solid-phase extraction of toxic elements in waters. Environ Chem Lett 14:67–77. https://doi.org/10.1007/s10311-015-0539-x

    Article  Google Scholar 

  5. Teixeira LSG, Lemos VA, Coelho LM, Rocha FRP (2016) Applications of biosorbents in atomic spectrometry. Appl Spectrosc Rev 51:36–72. https://doi.org/10.1080/05704928.2015.1101698

    Article  Google Scholar 

  6. Li Y, Taggart MA, McKenzie C et al (2019) Utilizing low-cost natural waste for the removal of pharmaceuticals from water: mechanisms, isotherms and kinetics at low concentrations. J Clean Prod 227:88–97. https://doi.org/10.1016/J.JCLEPRO.2019.04.081

    Article  Google Scholar 

  7. Kumar NS, Asif M, Al-Hazzaa MI (2018) Adsorptive removal of phenolic compounds from aqueous solutions using pine cone biomass: kinetics and equilibrium studies. Environ Sci Pollut Res 25:21949–21960. https://doi.org/10.1007/s11356-018-2315-5

    Article  Google Scholar 

  8. Younis SA, El-Gendy NS, El-Azab WI, Moustafa YM (2014) Kinetic, isotherm, and thermodynamic studies of polycyclic aromatic hydrocarbons biosorption from petroleum refinery wastewater using spent waste biomass. Desalin Water Treat:1–11. https://doi.org/10.1080/19443994.2014.964331

  9. Akhtar S, Anjum FM, Anjum MA (2011) Micronutrient fortification of wheat flour: recent development and strategies. Food Res Int 44:652–659

    Article  Google Scholar 

  10. Barker AV, Pilbeam DJ (2015) Handbook of plant nutrition. CRC Press

  11. Jadczyszyn T, Diatta JB, Instytut Uprawy N i G (Puławy). DU i W (2013) Problemy gospodarki nawozowej w Polsce. Dział Upowszechniania i Wydawnictw IUNG-PIB

  12. Samoraj M (2016) Biosorpcja mikroelementów do biomasy jako metoda utylizacji pozostałości po ekstrakcji nadkrytycznej. Rap Wydz Chem Politech Wrocławskiej Ser PRE 10:167

    Google Scholar 

  13. Chojnacka K, Tuchy Ł, Samoraj M et al (2014) New biological fertilizer components with micronutrients by biosorption. Adv Fertil Technol 24:543–575

    Google Scholar 

  14. Poór P, Ördög A, Wodala B, Tari I (2015) Effect of EDTA-assisted copper uptake on photosynthetic activity and biomass production of sweet sorghum. Cereal Res Commun 43:604–615. https://doi.org/10.1556/0806.43.2015.028

    Article  Google Scholar 

  15. Tozsin G, Arol AI (2015) Pyritic tailings as a source of plant micronutrients in calcareous soils. Commun Soil Sci Plant Anal 46:1473–1481. https://doi.org/10.1080/00103624.2015.1043446

    Article  Google Scholar 

  16. Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266. https://doi.org/10.1016/j.pbi.2009.05.006

    Article  Google Scholar 

  17. Jeong J, Lou GM (2009) Homing in on iron homeostasis in plants. Trends Plant Sci 14:280–285. https://doi.org/10.1016/j.tplants.2009.02.006

    Article  Google Scholar 

  18. Chatterjee S, Chattopadhyay B, Mukhopadhyay SK (2006) Trace metal distribution in tissues of cichlids (Oreochromis niloticus and O. mossambicus) collected from wastewater-fed fishponds in East Calcutta Wetlands, a Ramsar site. Acta Ichthyol Piscat 36:119–125. https://doi.org/10.3750/AIP2006.36.2.05

    Article  Google Scholar 

  19. Puig S, Andrés-Colás N, García-Molina A, Peñarrubia L (2007) Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ 30:271–290. https://doi.org/10.1111/j.1365-3040.2007.01642.x

    Article  Google Scholar 

  20. Pilon M, Abdel-Ghany SE, Cohu CM, Gogolin KA, Ye H (2006) Copper cofactor delivery in plant cells. Curr Opin Plant Biol 9:256–263. https://doi.org/10.1016/j.pbi.2006.03.007

    Article  Google Scholar 

  21. Sinclair SA, Krämer U (2012) The zinc homeostasis network of land plants. Biochim Biophys Acta - Mol Cell Res 1823:1553–1567. https://doi.org/10.1016/j.bbamcr.2012.05.016

    Article  Google Scholar 

  22. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702. https://doi.org/10.1111/j.1469-8137.2007.01996.x

    Article  Google Scholar 

  23. Reguera M, Wimmer M, Bustos P et al (2010) Ligands of boron in Pisum sativum nodules are involved in regulation of oxygen concentration and rhizobial infection. Plant Cell Environ 33:1039–1048. https://doi.org/10.1111/j.1365-3040.2010.02125.x

    Article  Google Scholar 

  24. Matas MA, González-Fontes A, Camacho-Cristóbal JJ (2009) Effect of boron supply on nitrate concentration and its reduction in roots and leaves of tobacco plants. Biol Plant 53:120–124. https://doi.org/10.1007/s10535-009-0016-0

    Article  Google Scholar 

  25. Dučić T, Polle A (2005) Transport and detoxification of manganese and copper in plants. Brazilian J Plant Physiol 17:103–112. https://doi.org/10.1590/S1677-04202005000100009

    Article  Google Scholar 

  26. Lidon FC, Barreiro MG, Ramalho JC (2004) Manganese accumulation in rice: implications for photosynthetic functioning. J Plant Physiol 161:1235–1244. https://doi.org/10.1016/j.jplph.2004.02.003

    Article  Google Scholar 

  27. Kaiser BN, Gridley KL, Brady JN et al (2005) The role of molybdenum in agricultural plant production. Ann Bot 96:745–754. https://doi.org/10.1093/aob/mci226

    Article  Google Scholar 

  28. Spiegel M, Zahs A, Grabke HJ (2003) Fundamental aspects of chlorine induced corrosion in power plants. Mater High Temp 20:153–159. https://doi.org/10.3184/096034003782749080

    Article  Google Scholar 

  29. Ianni A, Iannaccone M, Martino C et al (2019) Zinc supplementation of dairy cows: effects on chemical composition, nutritional quality and volatile profile of Giuncata cheese. Int Dairy J 94:65–71. https://doi.org/10.1016/j.idairyj.2019.02.014

    Article  Google Scholar 

  30. Cousins RJ (2017) Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol Rev 65:238–309. https://doi.org/10.1152/physrev.1985.65.2.238

    Article  Google Scholar 

  31. Tomlinson DJ, Mulling CH, Fakler TM (2004) Invited review: Formation of keratins in the bovine claw: roles of hormones, minerals, and vitamins in functional claw integrity. J Dairy Sci 87:797–809. https://doi.org/10.3168/jds.S0022-0302(04)73223-3

    Article  Google Scholar 

  32. Arthington JD, Corah LR, Blecha F (1996) The effect of molybdenum-induced copper deficiency on acute-phase protein concentrations, superoxide dismutase activity, leukocyte numbers, and lymphocyte proliferation in beef heifers inoculated with bovine herpesvirus-1. J Anim Sci 74:211–217. https://doi.org/10.2527/1996.741211x

    Article  Google Scholar 

  33. Hellman NE, Kono S, Mancini GM, Hoogeboom AJ, de Jong GJ, Gitlin JD (2002) Mechanisms of copper incorporation into human ceruloplasmin. J Biol Chem 277:46632–46638. https://doi.org/10.1074/jbc.M206246200

    Article  Google Scholar 

  34. Lingala S, Ghany MG (2016) The yin and yang of copper during infection. J Biol Inorg Chem 25:289–313. https://doi.org/10.1016/j.bbi.2017.04.008

    Article  Google Scholar 

  35. Cassandri M, Smirnov A, Novelli F et al (2017) Zinc-finger proteins in health and disease. Cell Death Discov 3. https://doi.org/10.1038/cddiscovery.2017.71

  36. Ivask A, Juganson K, Bondarenko O, Mortimer M, Aruoja V, Kasemets K, Blinova I, Heinlaan M, Slaveykova V, Kahru A (2014) Mechanisms of toxic action of Ag, ZnO and CuO nanoparticles to selected ecotoxicological test organisms and mammalian cells in vitro: a comparative review. Nanotoxicology 8:57–71. https://doi.org/10.3109/17435390.2013.855831

    Article  Google Scholar 

  37. Jamróz D, Podkówka W, Chachułkowa J (2004) Żywienie zwierzat i paszoznastwo. PWN, Warszawa

    Google Scholar 

  38. Erikson KM, Syversen T, Aschner JL, Aschner M (2005) Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration. Environ Toxicol Pharmacol 19:415–421. https://doi.org/10.1016/j.etap.2004.12.053

    Article  Google Scholar 

  39. Deptula P, Chamlagain B, Edelmann M et al (2017) Food-like growth conditions support production of active vitamin B12 by Propionibacterium freudenreichii 2067 without DMBI, the lower ligand base, or cobalt supplementation. Front Microbiol 8:1–11. https://doi.org/10.3389/fmicb.2017.00368

    Article  Google Scholar 

  40. Prado EL, Dewey KG (2014) Nutrition and brain development in early life. Nutr Rev 72:267–284. https://doi.org/10.1111/nure.12102

    Article  Google Scholar 

  41. Pu Y, Li S, Xiong H et al (2018) Iron promotes intestinal development in neonatal piglets. Nutrients 10:1–11. https://doi.org/10.3390/nu10060726

    Article  Google Scholar 

  42. Raulin J (1869) Etudes chimiques sur la végétation. Ann Sci Nat Bot Biol Veg 11:92–299

    Google Scholar 

  43. SLRYM M (2015) Effects of exogenous NO on the growth , mineral nutrient content , antioxidant system , and ATPase activities of Trifolium repens L . plants under cadmium stress. https://doi.org/10.1007/s11738-014-1721-7

  44. Goos RJ, Johnson B, Jackson G et al (2007) Greenhouse evaluation of controlled-release iron fertilizers for soybean greenhouse evaluation of controlled-release:4167. https://doi.org/10.1081/PLN-120027546

  45. Burkhead JL, Reynolds KAG, Abdel-ghany SE, et al (2009) Copper homeostasis. 799–816

  46. Hafeez B, Khanif YM, Saleem M (2013) Role of zinc in plant nutrition- a review 3:374–391

  47. Krzyżewski J, Bagnicka E, Olav HJ (2014) The effect of selenium supplementation to the diet of dairy cows and goats on production traits and animal health* – a review. Anim Sci Pap Reports 32:283–299

    Google Scholar 

  48. Wiaętkiewicz S, Arczewska-Włosek A, Krawczyk J et al (2015) Dietary factors improving eggshell quality: an updated review with special emphasis on microelements and feed additives. Worlds Poult Sci J 71:83–93. https://doi.org/10.1017/S0043933915000082

    Article  Google Scholar 

  49. González-Maldonado J, Rangel-Santos R, Rodríguez-de Lara R, García-Peña O (2017) Effect of injectable trace mineral complex supplementation on development of ovarian structures and serum copper and zinc concentrations in over-conditioned Holstein cows. Anim Reprod Sci 181:57–62. https://doi.org/10.1016/j.anireprosci.2017.03.015

    Article  Google Scholar 

  50. Marques R, Cooke RF, Rodrigues MC et al (2016) Effects of organic or inorganic Co, Cu, Mn, and Zn supplementation to late-gestating beef cows on productive and physiological responses of the offspring. J Anim Sci 94:12–13. https://doi.org/10.2527/jam2016-0025

    Article  Google Scholar 

  51. De K, Pal S, Mukherjee J et al (2015) Effect of in vitro copper and zinc supplementation on neutrophil phagocytic activity and lymphocyte proliferation response of transition dairy cows. Agric Res 4:388–395. https://doi.org/10.1007/s40003-015-0181-7

    Article  Google Scholar 

  52. Dang AK, Prasad S, De K et al (2013) Effect of supplementation of vitamin E, copper and zinc on the in vitro phagocytic activity and lymphocyte proliferation index of peripartum Sahiwal (Bos indicus) cows. J Anim Physiol Anim Nutr (Berl) 97:315–321. https://doi.org/10.1111/j.1439-0396.2011.01272.x

    Article  Google Scholar 

  53. Kurek Ł, Olech M, Lutnicki K et al (2017) Long-term subclinical copper deficiency and it is influence on functions of parenchymal organs and the serum macro-element deficiency in dairy cows. J Elem 22:1415–1425. https://doi.org/10.5601/jelem.2017.22.1.1417

    Article  Google Scholar 

  54. Suttle NF (2010) Mineral nutrition of livestock, 4th edition

  55. Weng X, Monteiro APA, Guo J, Li C, Orellana RM, Marins TN, Bernard JK, Tomlinson DJ, DeFrain J, Wohlgemuth SE, Tao S (2017) Effects of heat stress and dietary zinc source on performance and mammary epithelial integrity of lactating dairy cows. J Dairy Sci 101:2617–2630. https://doi.org/10.3168/jds.2017-13484

    Article  Google Scholar 

  56. Hansen SL, Spears JW, Lloyd KE, Whisnant CS (2010) Feeding a low manganese diet to heifers during gestation impairs fetal growth and development. J Dairy Sci 89:4305–4311. https://doi.org/10.3168/jds.s0022-0302(06)72477-8

    Article  Google Scholar 

  57. Rollin E, Berghaus RD, Rapnicki P, Godden SM, Overton MW (2010) The effect of injectable butaphosphan and cyanocobalamin on postpartum serum β-hydroxybutyrate, calcium, and phosphorus concentrations in dairy cattle. J Dairy Sci 93:978–987. https://doi.org/10.3168/jds.2009-2508

    Article  Google Scholar 

  58. Atyabi N, Gharagozloo F, Nassiri SM (2006) The necessity of iron supplementation for normal development of commercially reared suckling calves. Comp Clin Path 15:165–168. https://doi.org/10.1007/s00580-006-0624-4

    Article  Google Scholar 

  59. Yenice E, Mizrak Y (2015) Effects of dietary organic or inorganic manganese, zinc, copper and chrome supplementation on the performance, egg quality and hatching characteristics of laying breeder hens. Ankara Üniversitesi Vet Fakültesi Derg 62:63–68. https://doi.org/10.1501/vetfak_0000002659

    Article  Google Scholar 

  60. Kim WK, Patterson PH (2005) Effects of dietary zinc supplementation on hen performance, ammonia volatilization, and nitrogen retention in manure. J Environ Sci Heal - Part B Pestic Food Contam Agric Wastes 40:675–686. https://doi.org/10.1081/PFC-200061598

    Article  Google Scholar 

  61. Kim JW, Kim JH, Shin JE, Kil DY (2016) Relative bioavailability of copper in tribasic copper chloride to copper in copper sulfate for laying hens based on egg yolk and feather copper concentrations. Poult Sci 95:1591–1597. https://doi.org/10.3382/ps/pew049

    Article  Google Scholar 

  62. Jarosz S, Marek A, Grądzki Z et al (2018) The effect of feed supplementation with a copper-glycine chelate and copper sulphate on selected humoral and cell-mediated immune parameters, plasma superoxide dismutase activity, ceruloplasmin and cytokine concentration in broiler chickens. J Anim Physiol Anim Nutr (Berl) 102:e326–e336. https://doi.org/10.1111/jpn.12750

    Article  Google Scholar 

  63. Karimi A, Sadeghi G, Vaziry A (2011) The effect of copper in excess of the requirement during the starter period on subsequent performance of broiler chicks. J Appl Poult Res 20:203–209. https://doi.org/10.3382/japr.2010-00290

    Article  Google Scholar 

  64. Sundaresan NR, Anish D, Sastry KVH, Saxena VK, Nagarajan K, Subramani J, Leo MD, Shit N, Mohan J, Saxena M, Ahmed KA (2008) High doses of dietary zinc induce cytokines, chemokines, and apoptosis in reproductive tissues during regression. Cell Tissue Res 332:543–554. https://doi.org/10.1007/s00441-008-0599-3

    Article  Google Scholar 

  65. Khan RU, Nikousefat Z, Javdani M et al (2011) Zinc-induced moulting: production and physiology. Worlds Poult Sci J 67:497–506. https://doi.org/10.1017/S0043933911000547

    Article  Google Scholar 

  66. Olgun O (2016) Manganese in poultry nutrition and its effect on performance and eggshell quality. Worlds Poult Sci J 73:45–56. https://doi.org/10.1017/S0043933916000891

    Article  Google Scholar 

  67. Berger LL (2006) Salt and trace minerals for livestock. Animals, Poultry and Other

    Google Scholar 

  68. M. Mazurkiewicz (2005) Choroby Drobiu. Wydaw Akad Rol Wrocław

  69. Jacela JY, DeRouchey JM, Tokach MD et al (2010) Feed additives for swine: fact sheets – high dietary levels of copper and zinc for young pigs, and phytase. Kansas Agric Exp Stn Res Reports:87–91. https://doi.org/10.4148/2378-5977.7068

  70. Mei SF, Yu B, Ju CF et al (2016) Effect of different levels of copper on growth performance and cecal ecosystem of newly weaned piglets. Ital J Anim Sci 9:378–381. https://doi.org/10.4081/ijas.2010.e71

    Article  Google Scholar 

  71. Pearce SC, Sanz Fernandez MV, Torrison J, Wilson ME, Baumgard LH, Gabler NK (2015) Dietary organic zinc attenuates heat stress–induced changes in pig intestinal integrity and metabolism. J Anim Sci 93:4702–4713. https://doi.org/10.2527/jas.2015-9018

    Article  Google Scholar 

  72. Leite FL, Vasquez E, Vannucci FA et al (2018) The effects of zinc amino acid complex supplementation on the porcine host response to Lawsonia intracellularis infection. Vet Res 49:1–9. https://doi.org/10.1186/s13567-018-0581-3

    Article  Google Scholar 

  73. Sargeant HR, Miller HM, Shaw MA (2011) Inflammatory response of porcine epithelial IPEC J2 cells to enterotoxigenic E. coli infection is modulated by zinc supplementation. Mol Immunol 48:2113–2121. https://doi.org/10.1016/j.molimm.2011.07.002

    Article  Google Scholar 

  74. Olinda RG, Maia LA, Frade MTS et al (2017) Degenerative axonopathy associated with copper deficiency in pigs. Pesqui Vet Bras 37:911–915. https://doi.org/10.1590/s0100-736x2017000900002

    Article  Google Scholar 

  75. Sanz Fernandez MV, Pearce SC, Gabler NK, Patience JF, Wilson ME, Socha MT, Torrison JL, Rhoads RP, Baumgard LH (2014) Effects of supplemental zinc amino acid complex on gut integrity in heat-stressed growing pigs. Animal 8:43–50. https://doi.org/10.1017/S1751731113001961

    Article  Google Scholar 

  76. Diet L, Miller KB, Caton JS, et al (2000) Nutrient interactions and toxicity — research communication. High dietary manganese lowers heart magnesium in pigs fed a low-magnesium diet. 1:2032–2035

  77. Cunha T (2012) Swine feeding and nutrition, III. Academic Press, New York

    Google Scholar 

  78. Schachtschneider KM, Liu Y, Rund LA, Madsen O, Johnson RW, Groenen MAM, Schook LB (2016) Impact of neonatal iron deficiency on hippocampal DNA methylation and gene transcription in a porcine biomedical model of cognitive development. BMC Genomics 17:1–14. https://doi.org/10.1186/s12864-016-3216-y

    Article  Google Scholar 

  79. Knight LC, Dilger RN (2018) Longitudinal effects of Iron deficiency anemia and subsequent repletion on blood parameters and the rate and composition of growth in pigs. Nutrients 10. https://doi.org/10.3390/nu10050632

  80. Li Y, Hansen SL, Borst LB et al (2016) Dietary iron deficiency and oversupplementation increase intestinal permeability, ion transport, and inflammation in pigs. J Nutr 146:1499–1505 Jn.116.231621

    Article  Google Scholar 

  81. Lö B (2000) Zinc and health: current status and future directions. J Nutr 130:1378–1383

    Article  Google Scholar 

  82. Regulation (EC) No 1831/2003 of the European Parliament and ... - EUR-Lex. https://eur-lex.europa.eu/legal-content/EN/LSU/?uri=CELEX:32003R1831. Accessed 4 Dec 2019

  83. Rashid A, Ryan J (2006) Micronutrient constraints to crop production in soils with Mediterranean-type characteristics : a review micronutrient constraints to crop production in soils with Mediterranean-type 4167:. https://doi.org/10.1081/PLN-120037530

  84. Davidson D, Gu FX (2012) Materials for sustained and controlled release of nutrients and molecules to support plant growth

  85. Korzeniowska J, Cultivation P (2014) Post ę p w badaniach nad nawozami o kontrolowanym dzia ł aniu

  86. Parliament THEE, Council THE, The OF, Union E (2003) Reg EC:1831/2003

  87. Nicol AM, Keeley MJ, Guild CDH, Isherwood P, Sykes AR (2003) Liveweight gain and copper status of young deer treated or untreated with copper oxide wire particles on ten deer farms in Canterbury. N Z Vet J 51:14–20. https://doi.org/10.1080/00480169.2003.36324

    Article  Google Scholar 

  88. Elkins AC, Deseo MA, Rochfort S, Ezernieks V, Spangenberg G (2019) Development of a validated method for the qualitative and quantitative analysis of cannabinoids in plant biomass and medicinal cannabis resin extracts obtained by super-critical fluid extraction. J Chromatogr B Anal Technol Biomed Life Sci 1109:76–83. https://doi.org/10.1016/j.jchromb.2019.01.027

    Article  Google Scholar 

  89. Tanase C, Talmaciu AI, Bâra IC et al (2018) New aspects of biomass waste valorization: spruce bark crude extracts as plant growth regulators. BioResources 13:3994–4007. https://doi.org/10.15376/biores.13.2.3994-4007

    Article  Google Scholar 

  90. Gramss G, Voigt KD, Bergmann H (2003) Irrigation with plant extracts in ecofarming increases biomass production and mineral and organic nitrogen content of plants. J Plant Nutr Soil Sci 166:612–620. https://doi.org/10.1002/jpln.200320265

    Article  Google Scholar 

  91. Ye XQ, Meng JL, Wu M (2019, 2019) The effects of Solidago canadensis water extracts on maize seedling growth in association with the biomass allocation pattern. PeerJ. https://doi.org/10.7717/peerj.6564

  92. Martínez-Patiño JC, Romero I, Ruiz E, et al (2017) Design and optimization of sulfuric acid pretreatment of extracted olive tree biomass using response surface methodology. BioResources 12:1779–1797. https://doi.org/10.15376/biores.12.1.1779-1797

  93. Kumar AK, Parikh BS, Pravakar M (2016) Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ Sci Pollut Res 23:9265–9275. https://doi.org/10.1007/s11356-015-4780-4

    Article  Google Scholar 

  94. Martins PF, De Melo MMR, Sarmento P, Silva CM (2016) Supercritical fluid extraction of sterols from Eichhornia crassipes biomass using pure and modified carbon dioxide. Enhancement of stigmasterol yield and extract concentration. J Supercrit Fluids 107:441–449. https://doi.org/10.1016/j.supflu.2015.09.027

    Article  Google Scholar 

  95. Babkin VA (2015) Theoretical and practical development of new drugs for medicine based on larch biomass extracts. Russ J Bioorganic Chem 41:679–685. https://doi.org/10.1134/S1068162015070031

    Article  Google Scholar 

  96. Massie BJ, Sanders TH, Dean LL (2015) Removal of heavy metal contamination from peanut skin extracts by waste biomass adsorption. J Food Process Eng 38:555–561. https://doi.org/10.1111/jfpe.12185

    Article  Google Scholar 

  97. Park WK, Moon M, Kwak MS, Jeon S, Choi GG, Yang JW, Lee B (2014) Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: increased production of biomass and FAMEs. Bioresour Technol 171:343–349. https://doi.org/10.1016/j.biortech.2014.08.109

    Article  Google Scholar 

  98. Roseiro LB, Duarte LC, Oliveira DL et al (2013) Supercritical, ultrasound and conventional extracts from carob (Ceratonia siliqua L.) biomass: effect on the phenolic profile and antiproliferative activity. Ind Crop Prod 47:132–138. https://doi.org/10.1016/j.indcrop.2013.02.026

    Article  Google Scholar 

  99. Hellman NE, Gitlin JD (2002) Ceruloplasmin metabolism and function. Annu Rev Nutr 22:439–458. https://doi.org/10.1146/annurev.nutr.22.012502.114457

    Article  Google Scholar 

  100. Yang Z, Qi XM, Yang HM et al (2018) Effects of dietary copper on growth performance, slaughter performance and nutrient content of fecal in growing goslings from 28 to 70 days of age. Rev Bras Cienc Avic 20:45–52. https://doi.org/10.1590/1806-9061-2017-0536

    Article  Google Scholar 

  101. Abd El-Hack ME, Alagawany M, Arif M et al (2017) Organic or inorganic zinc in poultry nutrition: a review. Worlds Poult Sci J 73:904–915. https://doi.org/10.1017/S0043933917000769

    Article  Google Scholar 

  102. Górniak W, Cholewińska P, Konkol D (2018, 2018) Feed additives produced on the basis of organic forms of micronutrients as a means of biofortification of food of animal origin. J Chem. https://doi.org/10.1155/2018/8084127

  103. Chemat F, Vian MA, Cravotto G (2012) Green extraction of natural products: concept and principles. Int J Mol Sci 13:8615–8627. https://doi.org/10.3390/ijms13078615

    Article  Google Scholar 

  104. Herrero M, Cifuentes A, Iban E (2006) Food Chemistry. Sub- and supercritical fluid extraction of functional ingredients from different natural sources : Plants , food-by-products , algae and microalgae: a review. 98:136–148. https://doi.org/10.1016/j.foodchem.2005.05.058

  105. Samoraj M, Tuhy Ł, Baśladyńska S, Chojnacka K (2015) Biofortification of maize grains with micronutrients by enriched biomass of blackcurrant seeds. Open Chem 13:1236–1244. https://doi.org/10.1515/chem-2015-0133

    Article  Google Scholar 

  106. Witkowska Z, Chojnacka K, Korczyński M, Świniarska M, Saeid A, Opaliński S, Dobrzański Z (2014) Soybean meal enriched with microelements by biosorption – a new biological feed supplement for laying hens. Part I. performance and egg traits. Food Chem 151:86–92. https://doi.org/10.1016/j.foodchem.2013.11.023

    Article  Google Scholar 

  107. Samoraj M, Tuhy Ł, Chojnacka K (2017) Valorization of biomass into micronutrient fertilizers. Waste and Biomass Valorization 10:1–7. https://doi.org/10.1007/s12649-017-0108-6

    Article  Google Scholar 

  108. Tuhy Ł, Samoraj M, Witkowska Z, Chojnacka K (2015) Biofortification of maize with micronutrients by Spirulina. Open Chem 13:1119–1126. https://doi.org/10.1515/chem-2015-0126

    Article  Google Scholar 

  109. Tuhy Ł, Samoraj M, Michalak I, Chojnacka K (2014) The application of biosorption for production of micronutrient fertilizers based on waste biomass. Appl Biochem Biotechnol 174:1376–1392. https://doi.org/10.1007/s12010-014-1074-0

    Article  Google Scholar 

  110. Samoraj M, Tuhy Ł, Chojnacka K New bench scale plant for biosorption

  111. Samoraj M, Tuhy Ł, Rusek P et al (2016) Pilot plant conversion of blackcurrant seeds into new micronutrient fertilizer biocomponents via biosorption. BioResources 11:400–413. https://doi.org/10.15376/biores.11.1.400-413

    Article  Google Scholar 

  112. Maurya R, Chokshi K, Ghosh T et al (2016) Lipid extracted microalgal biomass residue as a fertilizer substitute for Zea mays L. Front Plant Sci 6:1–10. https://doi.org/10.3389/fpls.2015.01266

    Article  Google Scholar 

  113. Michalak I. (2009) Nowa generacja biologicznych dodatków paszowych z mikroelementami na bazie makroalg

  114. Chojnacka K, Chojnacki A, Górecka H (2004) Trace element removal by Spirulina sp. from copper smelter and refinery effluents. Hydrometallurgy 73:147–153. https://doi.org/10.1016/j.hydromet.2003.10.003

    Article  Google Scholar 

  115. Saeid A, Chojnacka K, Korczyński M, Korniewicz D, Dobrzański Z (2013) Biomass of Spirulina maxima enriched by biosorption process as a new feed supplement for swine. J Appl Phycol 25:667–675. https://doi.org/10.1007/s10811-012-9901-6

    Article  Google Scholar 

  116. Michalak I, Chojnacka K, Dobrzański Z, Górecki H, Zielińska A, Korczyński M, Opaliński S (2011) Effect of macroalgae enriched with microelements on egg quality parameters and mineral content of eggs, eggshell, blood, feathers and droppings. J Anim Physiol Anim Nutr (Berl) 95:374–387. https://doi.org/10.1111/j.1439-0396.2010.01065.x

    Article  Google Scholar 

  117. Witkowska Z, Świniarska M, Korczyński M et al (2019) Biofortification of hens’ eggs with microelements by innovative bio-based dietary supplement. J Anim Physiol Anim Nutr (Berl):485–492. https://doi.org/10.1111/jpn.13027

  118. Dobrzański Z, Dorota J, Sebastian O, Górecka H (2003) Electronic of POLISH AGRICULTURAL Volume 6 Issue 2 Series Animal bioavailability of selenium and zinc supplied to the feed for laying hens IN. 0–5

  119. Deniz F, Kepekci RA (2016) Equilibrium and kinetic studies of azo dye molecules biosorption on phycocyanin-extracted residual biomass of microalga Spirulina platensis. Desalin Water Treat 57:12257–12263. https://doi.org/10.1080/19443994.2015.1046945

    Article  Google Scholar 

  120. Kwiecień M, Samolińska W, Bujanowicz-Haraś B (2015) Effects of copper glycine chelate on liver and faecal mineral concentrations, and blood parameters in broilers. J Anim Physiol Anim Nutr (Berl) 99:1184–1196. https://doi.org/10.1111/jpn.12322

    Article  Google Scholar 

  121. Osorio JS, Trevisi E, Li C et al (2016) Supplementing Zn, Mn, and Cu from amino acid complexes and Co from cobalt glucoheptonate during the peripartal period benefits postpartal cow performance and blood neutrophil function. J Dairy Sci 99:1868–1883. https://doi.org/10.3168/jds.2015-10040

    Article  Google Scholar 

  122. Nemec LM, Richards JD, Atwell CA, Diaz DE, Zanton GI, Gressley TF (2012) Immune responses in lactating Holstein cows supplemented with cu, Mn, and Zn as sulfates or methionine hydroxy analogue chelates. J Dairy Sci 95:4568–4577. https://doi.org/10.3168/jds.2012-5404

    Article  Google Scholar 

  123. Zhang L, Liu XR, Liu JZ, An XP, Zhou ZQ, Cao BY, Song YX (2018) Supplemented organic and inorganic selenium affects milk performance and selenium concentration in milk and tissues in the Guanzhong dairy goat. Biol Trace Elem Res 183:254–260. https://doi.org/10.1007/s12011-017-1112-1

    Article  Google Scholar 

  124. Hillyer LL, Ridd Z, Fenwick S, Hincks P, Paine SW (2018) Pharmacokinetics of inorganic cobalt and a vitamin B12 supplement in the thoroughbred horse: differentiating cobalt abuse from supplementation. Equine Vet J 50:343–349. https://doi.org/10.1111/evj.12774

    Article  Google Scholar 

  125. KiŠidayová S, PristaŠ P, ZimovČáková M et al (2018) The effects of high dose of two manganese supplements (organic and inorganic) on the rumen microbial ecosystem. PLoS One 13:1–12. https://doi.org/10.1371/journal.pone.0191158

    Article  Google Scholar 

  126. Gheisari AA, Sanei A, Samie A, Gheisari MM, Toghyani M (2011) Effect of diets supplemented with different levels of manganese, zinc, and copper from their organic or inorganic sources on egg production and quality characteristics in laying hens. Biol Trace Elem Res 142:557–571. https://doi.org/10.1007/s12011-010-8779-x

    Article  Google Scholar 

  127. Chojnacka K, Gorazda K, Witek-Krowiak A, Moustakas K (2019) Recovery of fertilizer nutrients from materials - contradictions, mistakes and future trends. Renew Sust Energ Rev 110:485–498. https://doi.org/10.1016/J.RSER.2019.04.063

    Article  Google Scholar 

Download references

Acknowledgments

This project is financed by The National Centre for Research and Development in Poland, grants BIOSTRATEG2/298205/9/NCBR/2016 and CuBR-IV/414713/NCBR/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Witek-Krowiak.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skrzypczak, D., Ligas, B., Mikula, K. et al. Valorization of post-extraction biomass residues as carriers of bioavailable micronutrients for plants and livestock. Biomass Conv. Bioref. 11, 3037–3052 (2021). https://doi.org/10.1007/s13399-019-00586-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-019-00586-z

Keywords

Navigation