Skip to main content
Log in

Hydrothermal carbonization of wheat straw—prediction of product mass yields and degree of carbonization by severity parameter

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The product yields of hydrothermal carbonization of wheat straw as well as the degree of carbonization are quantified as functions of process parameters by using a severity approach. The process severity was calculated from temperature, retention time, and catalyst concentration. Data gained from batch experiments (190–245 °C, 150–570 min) were used to fit the model parameters. By these models, basing on few selected reaction conditions, a wide range of process conditions can be covered and the yields for the solid, solved organic, and gaseous product phase can be predicted. Moreover, the paper delivers model equations for the prediction of the H/C and O/C ratios for the solid product phase. Such model equations can be used for process optimization and for valid LCA calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bergius F (1932) Chemical reactions under high pressure. Nobel Lecture

  2. Danso-Boateng E, Shama G, Wheatley AD, Martin SJ, Holdich RG (2015) Hydrothermal carbonisation of sewage sludge: effect of process conditions on product characteristics and methane production. Bioresour Technol 177:318–27

    Article  Google Scholar 

  3. Guiotoku M, Rambo CR, Hotza D (2014) Charcoal produced from cellulosic raw materials by microwave-assisted hydrothermal carbonization. J Therm Anal Calorim 117(1):269–75

    Article  Google Scholar 

  4. Reza MT, Wirth B, Lueder U, Werner M (2014) Behavior of selected hydrolyzed and dehydrated products during hydrothermal carbonization of biomass. Bioresour Technol 169:352–61

    Article  Google Scholar 

  5. Yan W, Hoekman SK, Broch A, Coronella CJ (2014) Effect of hydrothermal carbonization reaction parameters on the properties of hydrochar and pellets. Environ Prog Sustain Energy 33(3):676–80

    Article  Google Scholar 

  6. Reza MT, Yan W, Uddin MH, Lynam JG, Hoekman SK, Coronella CJ et al (2013) Reaction kinetics of hydrothermal carbonization of loblolly pine. Bioresour Technol 139:161–9

    Article  Google Scholar 

  7. Lynam JG, Reza MT, Vasquez VR, Coronella CJ (2012) Effect of salt addition on hydrothermal carbonization of lignocellulosic biomass. Fuel 99:271–3

    Article  Google Scholar 

  8. Reza MT, Lynam JG, Uddin MH, Coronella CJ (2013) Hydrothermal carbonization: fate of inorganics. Biomass Bioenergy 49:86–94

    Article  Google Scholar 

  9. Wiedner K, Naisse C, Rumpel C, Pozzi A, Wieczorek P, Glaser B (2013) Chemical modification of biomass residues during hydrothermal carbonization—what makes the difference, temperature or feedstock? Org Geochem 54:91–100

    Article  Google Scholar 

  10. Roman S, Nabais JMV, Laginhas C, Ledesma B, Gonzalez JF (2012) Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Process Technol 103(SI):78–83

    Article  Google Scholar 

  11. Hoekman SK, Broch A, Robbins C (2011) Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy Fuel 25(4):1802–10

    Article  Google Scholar 

  12. Mumme J, Eckervogt L, Pielert J, Diakite M, Rupp F, Kern J (2011) Hydrothermal carbonization of anaerobically digested maize silage. Bioresour Technol 102(19):9255–60

    Article  Google Scholar 

  13. Ruyter HP (1982) Coalification model. Fuel 61(12):1182–7

    Article  Google Scholar 

  14. Abatzoglou N, Chornet E, Belkacemi K, Overend RP (1992) Phenomenological kinetics of complex systems: the development of a generalized severity parameter and its application to lignocellulosics fractionation. Chem Eng Sci 47(5):1109–22

    Article  Google Scholar 

  15. Janga KK, Øyaas K, Hertzberg T, Moe ST (2012) Application of a pseudo-kinetic generalized severity model to the concentrated sulfuric acid hydrolysis of pinewood and aspenwood. BioResources 7(3).

  16. Kruse A, Badoux F, Grandl R, Wüst D (2012) Hydrothermale Karbonisierung: 2. Kinetik der Biertreber-Umwandlung Chemie Ing Tech 84(4):509–12

    Article  Google Scholar 

  17. Kieseler S, Neubauer Y, Zobel N (2013) Ultimate and proximate correlations for estimating the higher heating value of hydrothermal solids. Energy Fuels 27(2):908–18

    Article  Google Scholar 

  18. Forchheim D, Hornung U, Kruse A, Sutter T (2014) Kinetic modelling of hydrothermal lignin depolymerisation. Waste Biomass Valor 5(6):985–94

    Article  Google Scholar 

  19. Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioprod Bioref 4(2):160–77

    Article  Google Scholar 

  20. Suwelack KU, Wüst D, Fleischmann P, Kruse A (2015) Prediction of gaseous, liquid and solid mass yields from hydrothermal carbonization of biogas digestate. Biomass Conv Bioref (N.N.)

  21. Mott RA, Spooner CE (1940) The calorific value of carbon in coal: the dulong relationship. Fuel 19(10, 11):226–31, 242–251

  22. Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sust Energ Rev 21:35–51

    Article  Google Scholar 

  23. Montane D, Salvade J, Farriol X, Jollez P, Chornet E (1994) Phenomenological kinetics of wood delignification: application of a time-dependent rate constant and a generalized severity parameter to pulping and correlation of pulp properties. Wood Sci Technol 28(6)

  24. Titirici M, Thomas A, Antonietti M (2007) Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J Chem 31(6):787

    Article  Google Scholar 

  25. Xu Q, Qian Q, Quek A, Ai N, Zeng G, Wang J (2013) Hydrothermal carbonization of macroalgae and the effects of experimental parameters on the properties of hydrochars. ACS Sustain Chem Eng 1(9):1092–101

    Article  Google Scholar 

  26. Stemann J, Putschew A, Ziegler F (2013) Hydrothermal carbonization: process water characterization and effects of water recirculation. Bioresour Technol 143:139–46

    Article  Google Scholar 

  27. del Río, José C, Rencoret J, Prinsen P, Martínez ÁT, Ralph J, Gutiérrez A (2012) Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J Agric Food Chem 60(23):5922–35

  28. Tambone F, Genevini P, D’Imporzano G, Adani F (2009) Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresour Technol 100(12):3140–2

    Article  Google Scholar 

  29. Kruse A, Grandl R (2015) Hydrothermale Karbonisierung: 3. Kinetisches Modell Chemie Ing Tech 87(4):449–56

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Joachim Schulze and Dr. Martin Brüchert from Fraunhofer Institute for Technological Trend Analysis INT in Euskirchen, Germany, for the support of this work and all reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Suwelack.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suwelack, K., Wüst, D., Zeller, M. et al. Hydrothermal carbonization of wheat straw—prediction of product mass yields and degree of carbonization by severity parameter. Biomass Conv. Bioref. 6, 347–354 (2016). https://doi.org/10.1007/s13399-015-0192-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-015-0192-4

Keywords

Navigation