Skip to main content

Valuable applications for peat moss


Peat is commonly known as a biofuel but it also has other more or less traditional uses, for example in folk medicine, building materials, or preservation of foods. Several studies suggest that the main composers of peat lands, Sphagnum mosses, may also have potential for a variety of other value-added products. Typically, those are related to the antibacterial and other preservative properties of Sphagnum, or to their high water adsorption ability. Molecular level applications, however, are still rarely reported. This might owe to the complex chemistry of Sphagnum and lacking cost-efficient technologies for the isolation of components of interest. In this literature survey, the structural and chemical properties of Sphagnum are reviewed together with their suggested uses. This is expected to facilitate new efforts to find commercially feasible applications for these extraordinary plants.

This is a preview of subscription content, access via your institution.


  1. 1.

    Gignac LD, Halsey LA, Vitt DH (2000) A bioclimatic model for the distribution of Sphagnum-dominated peatlands in North America under present climatic conditions. J Biogeogr 27(5):1139–1151

    Article  Google Scholar 

  2. 2.

    Gunnarsson U (2005) Global patterns of Sphagnum productivity. J Bryol 27:269–279

    Article  Google Scholar 

  3. 3.

    Tolonen K, Turunen J (1996) Accumulation rates of carbon in mires in Finland and implications for climate change. The Holocene 6(2):171–178

    Article  Google Scholar 

  4. 4.

    Clymo RS, Hayward PM (1982) The ecology of Sphagnum. In: Smith A (ed) Bryophyte ecology. Chapman and Hall, New York, pp 229–289

    Chapter  Google Scholar 

  5. 5.

    Turetsky MR, Crow SE, Evans RJ, Vitt DH, Wieder RK (2008) Trade-offs in resource allocation among moss species control decomposition in boreal peatlands. J Ecol 96(6):1297–1305

    Article  Google Scholar 

  6. 6.

    Charman D (2002) Peatlands and environmental change. John Wiley and sons, Chicrester

    Google Scholar 

  7. 7.

    The Geological Survey of Finland. [Use of peatlands in Finland]. Available at Accessed 12.10.2014

  8. 8.

    Rydin H, Jeglum J (2006) The biology of peatlands. Oxford University Press, Oxford

    Book  Google Scholar 

  9. 9.

    Russell S (1990) Bryophyte production and decomposition in tundra ecosystems. J Linn Soc Bot 104(1–3):3–22

    Article  Google Scholar 

  10. 10.

    Shaw AJ, Goffinet B (2000) Bryophyte biology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  11. 11.

    Watson EV (1978) The structure and life of bryophytes, 3rd edn. Hutchinson and Co. Ltd., London

    Google Scholar 

  12. 12.

    Séneca A, Söderström L (2008) Species richness and distribution ranges of European Sphagnum. Folia Cryptog Estonica 44:125–130

    Google Scholar 

  13. 13.

    Vitt DH (2000) The classification of mosses: two-hundred years after Hedwig. Nova Hedwigia 70(1–2):25–36

    Google Scholar 

  14. 14.

    Zaitseva TL, Parmon SV (2009) Composition and properties of the fractions of a water-ethanol extract from peat. Solid Fuel Chem 43(5):273–276

    Article  Google Scholar 

  15. 15.

    Van Breemen N (1995) How Sphagnum bogs down other plants. Trends Ecol Evol 10(7):270–275

    Article  Google Scholar 

  16. 16.

    Willför S, Pranovich A, Tamminen T, Puls J, Laine C, Suurnäkki A et al (2009) Carbohydrate analysis of plant materials with uronic acid-containing polysaccharides—a comparison between different hydrolysis and subsequent chromatographic analytical techniques. Ind Crop Prod 29(2–3):571–580

    Article  Google Scholar 

  17. 17.

    Larmola T, Tuittila ES, Tiirola M, Nykänen H, Martikainen PJ, Yrjälä K et al (2010) The role of Sphagnum mosses in the methane cycling of a boreal mire. Ecology 91(8):2356–2365

    Article  Google Scholar 

  18. 18.

    Strakova P, Anttila J, Spetz P, Kitunen V, Tapanila T, Laiho R (2010) Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level. Plant Soil 335(1–2):501–520

    Article  Google Scholar 

  19. 19.

    Kremer C, Pettolino F, Bacic A, Drinnan A (2004) Distribution of cell wall components in Sphagnum hyaline cells and in liverwort and hornwort elaters. Planta 219(6):1023–1035

    Article  Google Scholar 

  20. 20.

    Rai AN, Soderback E, Bergman B (2000) Cyanobacterium-plant symbioses. New Phytol 147(3):449–481

    Article  Google Scholar 

  21. 21.

    Maksimova V, Klavina L, Bikovens O, Zicmanis A, Purmalis O (2013) Structural characterization and chemical classification of some bryophytes found in Latvia. Chem Biodivers 10(7):1284–1294

    Article  Google Scholar 

  22. 22.

    Fuchsman C (2012) Peat: industrial chemistry and technology. Elsevier

  23. 23.

    Popper ZA, Fry SC (2003) Primary cell wall composition of bryophytes and charophytes. Ann Bot 91(1):1–12

    Article  Google Scholar 

  24. 24.

    Clymo RS (1963) Ion exchange in sphagnum and its relation to bog ecology. Ann Bot 27(2):309–324

    Google Scholar 

  25. 25.

    Painter TJ (1983) Carbohydrate origin of aquatic humus from peat. Carbohydr Res 124(1):C22–C26

    MathSciNet  Article  Google Scholar 

  26. 26.

    Painter TJ (1998) Carbohydrate polymers in food preservation: an integrated view of the Maillard reaction with special reference to discoveries of preserved foods in Sphagnum-dominated peat bogs. Carbohydr Polym 36(4):335–347

    MathSciNet  Article  Google Scholar 

  27. 27.

    Haukioja E, Ossipov V, Koricheva J, Honkanen T, Larsson S, Lempa K (1998) Biosynthetic origin of carbon-based secondary compounds: cause of variable responses of woody plants to fertilization? Chemoecology 8(3):133–139

    Article  Google Scholar 

  28. 28.

    Naumova GV, Tomson AE, Zhmakova NA, Makarova NL, Ovchinnikova TF (2013) Phenolic compounds of sphagnum peat. Solid Fuel Chem 47(1):22–26

    Article  Google Scholar 

  29. 29.

    Ballance S, Kristiansen KA, Skogaker NT, Tvedt KE, Christensen BE (2012) The localisation of pectin in Sphagnum moss leaves and its role in preservation. Carbohydr Polym 87(2):1326–1332

    Article  Google Scholar 

  30. 30.

    Hajek T, Ballance S, Limpens J, Zijlstra M, Verhoeven JTA (2011) Cell-wall polysaccharides play an important role in decay resistance of Sphagnum and actively depressed decomposition in vitro. Biogeochemistry 103(1–3):45–57

    Article  Google Scholar 

  31. 31.

    Tsuneda A, Thormann MN, Currah RS (2001) Modes of cell-wall degradation of Sphagnum fuscum by Acremonium cf. curvulum and Oidiodendron maius. Can J Bot 79(1):93–100

    Google Scholar 

  32. 32.

    Tutschek R (1982) An evaluation of phenylpropanoid metabolism during cold-induced sphagnorubin synthesis in sphagnum-magellanicum brid. Planta 155(4):301–306

    Article  Google Scholar 

  33. 33.

    Rudolph HÅ, Samland J (1985) Occurrence and metabolism of sphagnum acid in the cell walls of bryophytes. Phytochemistry 24(4):745–749

    Article  Google Scholar 

  34. 34.

    Williams CJ, Yavitt JB, Wieder RK, Cleavitt NL (1998) Cupric oxide oxidation products of northern peat and peat-forming plants. Can J Bot 76(1):51–62

    Google Scholar 

  35. 35.

    Morita H (1975) Phenolic palmitate in sphagnum peat. Geochim Cosmochim Acta 39(2):218–220

    Article  Google Scholar 

  36. 36.

    Lobell JA, Patel SS (2010) Bog bodies rediscovered. True tales from the peat marshes of northern Europe. Arhaeology Archive 63[3]

  37. 37.

    Borsheim KY, Christensen BE, Painter T (2012) Preservation of fish by embedment in Sphagnum moss, peat, or holocellulose: experimental proof of the oxopolysaccharidic nature of the preservative substance and its antimicrobial and tanning action. Innovative Food Sci Emerg Technol 2(1):63–74

    Article  Google Scholar 

  38. 38.

    Jan IC (2004) Birds use herbs to protect their nests. Proceedings of the 104th general meeting of the American society for microbiology

  39. 39.

    Burtt EH, Ichida JM (1999) Occurrence of feather-degrading bacilli in the plumage of birds. Auk 116(2):364–372

    Article  Google Scholar 

  40. 40.

    Dickinson CH, Maggs GH (2014) Aspects of the decomposition of Sphagnum leaves in an ombrophilous mire. New Phytol 73(6):1249–1257

    Article  Google Scholar 

  41. 41.

    Painter TJ, Sorensen NA (1978) Cation-exchanger of Sphagnum mosses—unusual form of Holocellulose. Carbohydr Res 66:C1–C3

    Article  Google Scholar 

  42. 42.

    Stalheim T, Ballance S, Christensen BE, Granum PE (2009) Sphagnan—a pectin-like polymer isolated from Sphagnum moss can inhibit the growth of some typical food spoilage and food poisoning bacteria by lowering the pH. J Appl Microbiol 106(3):967–976

    Article  Google Scholar 

  43. 43.

    Ballance S, Kristiansen KA, Holt J, Christensen BE (2008) Interactions of polysaccharides extracted by mild acid hydrolysis from the leaves of Sphagnum papillosum with either phenylhydrazine, o-phenylenediamine and its oxidation products or collagen. Carbohydr Polym 71(4):550–558

    Article  Google Scholar 

  44. 44.

    Painter TJ (1991) Lindow Man, Tollund Man and other peat-bog bodies—the preservative and antimicrobial action of sphagnam, a reactive glycuronoglycan with tanning and sequestering properties. Carbohydr Polym 15(2):123–142

    Article  Google Scholar 

  45. 45.

    Lang SI, Cornelissen JHC, Klahn T, van Logtestijn RSP, Broekman R, Schweikert W et al (2009) An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. J Ecol 97(5):886–900

    Article  Google Scholar 

  46. 46.

    Ballance S, Borsheim KY, Inngjerdingen K, Paulsen BS, Christensen BE (2007) A re-examination and partial characterisation of polysaccharides released by mild acid hydrolysis from the chlorite-treated leaves of Sphagnum papillosum. Carbohydr Polym 67(1):104–115

    Article  Google Scholar 

  47. 47.

    Brul S, Coote P (1999) Preservative agents in foods—mode of action and microbial resistance mechanisms. Int J Food Microbiol 50(1–2):1–17

    Article  Google Scholar 

  48. 48.

    Painter TJ (2003) Concerning the wound-healing properties of Sphagnum holocellulose: the Maillard reaction in pharmacology. J Ethnopharmacol 88(2–3):145–148

    Article  Google Scholar 

  49. 49.

    Painter TJ (1991) Preservation in peat. Chem Ind 12:421–424

    Google Scholar 

  50. 50.

    Smidsrod O, Painter TJ (1984) Contribution of carbohydrates to the cation-exchange selectivity of aquatic humus from peat-bog water. Carbohydr Res 127(2):267–281

    Article  Google Scholar 

  51. 51.

    Bown D (1995) The Royal Horticultural Society encyclopedia of herbs & their uses. Dorling Kindersley Limited

  52. 52.

    Saxena K (2004) Uses of bryophytes. Resonance 9(6):56–65

    Article  Google Scholar 

  53. 53.

    Russell MD (2010) Antibiotic activity of extracts from some Bryophytes in South Western British Columbia. Medical Student Journal of Australia .The Australian National University 2

  54. 54.

    Singh M, Rawat AKS, Govindarajan R (2007) Antimicrobial activity of some Indian mosses. Fitoterapia 78(2):156–158

    Article  Google Scholar 

  55. 55.

    Iotti M, Fava P, Ballance S, Christensen BE, Rustad T (2007) Absorbent pads for food trays made from Sphagnum moss. Ital Journal Food Sci 19:104–109

    Google Scholar 

  56. 56.

    Ballance S, Christensen BE (2007) Moss-derived antimicrobial composition. 12-7-2007. Google Patents

  57. 57.

    Newton CL, Logan JA (1992) On site conservation with the Canadian Conservation Institute. In: Payton R (ed) Retrieval of objects from archaeological sites. Archetype, London, pp 127–132

    Google Scholar 

  58. 58.

    Scott R, Grant T (2007) Conservation manual for northern archaeologists, 3rd edition. Electronic version at Conservation Section, Prince of Wales Northern Heritage Centre, Department of Education, Culture and Employment Government of the Northwest Territories, Canada

  59. 59.

    Solazzo C, Dyer JM, Clerens S, Plowman J, Peacock EE, Collins MJ (2013) Proteomic evaluation of the biodegradation of wool fabrics in experimental burials. Int Biodeterior Biodegrad 80:48–59

    Article  Google Scholar 

  60. 60.

    Kulzer L, Luchessa S, Cooke S, Errington R, Weinmann F (2001) Characteristics of the low-elevation Sphagnum-dominated peatlands of western Washington: a community profile. Part 1 physical, chemical and vegetation characteristics. Electronic version at Environmental Protection Agency (EPA), Seattle

    Google Scholar 

  61. 61.

    Buck WR (1990) Field guide to the peat mosses of boreal North America. Brittonia 42(4):291

    Article  Google Scholar 

  62. 62.

    Porter JB (1917) Sphagnum moss for use as a surgical dressing; its collection, preparation and other details. Can Med Assoc J 7(3):201–207

    Google Scholar 

  63. 63.

    Glime JM (2007) Economic and ethnic uses of Bryophytes

  64. 64.

    Wallace RS (1986) A history of the use of sphagnum in surgical dressings. Am J Bot 73(5):613

    Google Scholar 

  65. 65.

    Onishchenko DV, Reva VP (2013) Sorption properties of carbon-base materials from sphagnum moss. Chem Technol Fuels Oils 49(2):93–99

    Article  Google Scholar 

  66. 66.

    Suni S, Kosunen AL, Romantschuk M (2006) Microbially treated peat-cellulose fabric as a biodegradable oil-collection cloth. J Environ Sci Health A Tox Hazard Subst Environ Eng 41(6):999–1007

    Article  Google Scholar 

  67. 67.

    Vashurina IY, Kochkina NE, Kalinnikov YA (2004) Effect of humic acid microadditives on the properties of starch hydrogels and films made from them. Fibre Chem 36(5):338–342

    Article  Google Scholar 

  68. 68.

    Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF et al (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113:71–88

    Article  Google Scholar 

  69. 69.

    Chen HX, Zhang M, Xie BJ (2004) Quantification of uronic acids in tea polysaccharide conjugates and their antioxidant properties. J Agric Food Chem 52(11):3333–3336

    Article  Google Scholar 

  70. 70.

    Montenegro G, Portaluppi MC, Salas FA, Diaz MF (2009) Biological properties of the Chilean native moss Sphagnum magellanicum. Biol Res 42(2):233–237

    Article  Google Scholar 

  71. 71.

    Roberfroid MB (2002) Global view on functional foods: European perspectives. Br J Nutr 88:S133–S138

    Article  Google Scholar 

  72. 72.

    Tarnawski M, Depta K, Grejciun D, Szelepin B (2006) HPLC determination of phenolic acids and antioxidant activity in concentrated peat extract—a natural immunomodulator. J Pharm Biomed Anal 41(1):182–188

    Article  Google Scholar 

  73. 73.

    Villarroel M, Acevedo C, Yanez E, Biolley E (2003) Functional properties of Sphagnum magellanicum fiber and its direct use in formulation of bakery products. Arch Latinoam Nutr 53(4):400–407

    Google Scholar 

  74. 74.

    Villarroel M, Biolley E, Yanez E, Peralta R (2002) Chemical characterization of the moss Sphagnum magellanicum. Arch Latinoam Nutr 52(4):393–399

    Google Scholar 

  75. 75.

    Villarroel M, Reyes C, Hazbun J, Karmelic J (2007) Optimization of a cake formulation with functional characteristics using resistant starch, Sphagnum magellanicum moss and deffated hazel nut flour (Gevuina avellana, Mol). Arch Latinoam Nutr 57(1):56–62

    Google Scholar 

  76. 76.

    Baas M, Pancost R, van Geel B, Damste JSS (2000) A comparative study of lipids in Sphagnum species. Org Geochem 31(6):535–541

    Article  Google Scholar 

  77. 77.

    Liu J (1995) Pharmacology of oleanolic acid and ursolic acid. J Ethnopharmacol 49(2):57–68

    Article  Google Scholar 

  78. 78.

    Ikeda Y, Murakami A, Ohigashi H (2008) Ursolic acid: an anti- and pro-inflammatory, triterpenoid. Mol Nutr Food Res 52(1):26–42

    Article  Google Scholar 

  79. 79.

    Liu H (2005) Oleanolic acid and ursolic acid: research perspectives. J Ethnopharmacol 100(1–2):92–94

    Article  Google Scholar 

  80. 80.

    Sultana N (2011) Clinically useful anticancer, antitumor, and antiwrinkle agent, ursolic acid and related derivatives as medicinally important natural product. J Enzyme Inhib Med Chem 26(5):616–642

    Article  Google Scholar 

  81. 81.

    Patel D, Shukla S, Gupta S (2007) Apigenin and cancer chemoprevention: progress, potential and promise (review). Int J Oncol 30(1):233–245

    Google Scholar 

  82. 82.

    Kim JH, Lee BC, Kim JH, Sim GS, Lee DH, Lee KE et al (2005) The isolation and antioxidative effects of vitexin from Acer palmatum. Arch Pharm Res 28(2):195–202

    Article  Google Scholar 

  83. 83.

    Yamada P, Isoda H, Han JK, Talorete TPN, Yamaguchi T, Abe Y (2007) Inhibitory effect of fulvic acid extracted from Canadian Sphagnum peat on chemical mediator release by RBL-2H3 and KU812 cells. Biosci Biotechnol Biochem 71(5):1294–1305

    Article  Google Scholar 

  84. 84.

    Helbig B, Klocking R, Wutzler P (1997) Anti-herpes simplex virus type 1 activity of humic acid-like polymers and their o-diphenolic starting compounds. Antivir Chem Chemother 8(3):265–273

    Article  Google Scholar 

  85. 85.

    Basile A, Giordano S, Lopez-Saez JA, Cobianchi RC (1999) Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry 52(8):1479–1482

    Article  Google Scholar 

  86. 86.

    Gamenara D, Pandolfi E, Saldana J, Dominguez L, Martinez MM, Seoane G (2001) Nematocidal activity of natural polyphenols from Bryophytes and their derivatives. Arzneimittel-Forschung-Drug Research 51(6):506–510

    Google Scholar 

  87. 87.

    Mellegard H, Stalheim T, Hormazabal V, Granum PE, Hardy SP (2009) Antibacterial activity of sphagnum acid and other phenolic compounds found in Sphagnum papillosum against food-borne bacteria. Lett Appl Microbiol 49(1):85–90

    Article  Google Scholar 

  88. 88.

    Martin AM (1983) Submerged production of Agaricus campestris Mycellum in peat extracts. J Food Sci 48(1):206–207

    Article  Google Scholar 

  89. 89.

    Martin AM (1982) Submerged growth of Morchella-Esculenta in peat hydrolysates. Biotechnol Lett 4(1):13–18

    Article  Google Scholar 

  90. 90.

    Manu-Tawiah W, Martin AM (1989) Peat extract as a carbon source for the growth of Pleurotus ostreatus mycelium. J Sci Food Agric 47(2):243–247

    Article  Google Scholar 

  91. 91.

    Boa JM, Leduy A (1982) Acidophilic fungus Scp from peat hydrolyzate. Can J Chem Eng 60(4):532–537

    Article  Google Scholar 

  92. 92.

    Martin AM, Lu C, Patel TR (1993) Growth-parameters for the yeast Rhodotorula-rubra grown in peat extracts. J Ferment Bioeng 76(4):321–325

    Article  Google Scholar 

  93. 93.

    Sheppard J, Mulligan CN (1987) The production of surfactin by Bacillus subtilis grown on peat hydrolysate. Appl Microbiol Biotechnol 27(2):110–116

    Article  Google Scholar 

  94. 94.

    Boa JM, Leduy A (1984) Peat hydrolysate medium optimization for pullulan production. Appl Environ Microbiol 48(1):26–30

    Google Scholar 

  95. 95.

    Leduy A, Boa JM (1983) Pullulan production from peat hydrolyzate. Can J Microbiol 29(1):143–146

    Article  Google Scholar 

  96. 96.

    Boa JM, Leduy A (1987) Pullulan from peat hydrolyzate fermentation kinetics. Biotechnol Bioeng 30(4):463–470

    Article  Google Scholar 

  97. 97.

    Radulovic MD, Cvetkovic OG, Nikolic SD, Dordevic DS, Jakovjevic DM, Vrvic MM (2008) Simultaneous production of pullulan and biosorption of metals by aureobasidium pullulans strain CH-1 on peat hydrolysate. Bioresour Technol 99(14):6673–6677

    Article  Google Scholar 

  98. 98.

    Bragazza L, Freeman C (2007) High nitrogen availability reduces polyphenol content in Sphagnum peat. Sci Total Environ 377(2–3):439–443

    Article  Google Scholar 

  99. 99.

    Wise LE, Murphy M, D’Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade Journal 122(2):35–42

    Google Scholar 

  100. 100.

    Ulmanu M, Maranon E, Fernandez Y, Castrillon L, Anger I, Dumitriu D (2003) Removal of copper and cadmium ions from diluted aqueous solutions by low cost and waste material adsorbents. Water Air Soil Pollut 142(1–4):357–373

    Article  Google Scholar 

  101. 101.

    Andresen K, Grasdalen H, Holsen KA, Painter TJ (1986) Structure, properties and potential applications of Sphagnum holocellulose. Industrial polysaccharides: the impact of biotechnology and advanced methodologies: Proceedings of the Conference on Recent Developments in Industrial Polysaccharides--the Impact of Biotechnology and Advanced Methodologies Held at the Stevens Institute of Technology, August 18 and 19, 1986

  102. 102.

    Jansen B, Nierop KGJ, Kotte MC, de Voogt P, Verstraten JM (2006) The applicability of accelerated solvent extraction (ASE) to extract lipid biomarkers from soils. Appl Geochem 21(6):1006–1015

    Article  Google Scholar 

  103. 103.

    Chen Y, Xie MY, Gong XF (2007) Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. J Food Eng 81(1):162–170

    Article  Google Scholar 

  104. 104.

    Peuravuori J (1994) Diverse use and chemistry of peat. Publications of the University of Turku, Finland

    Google Scholar 

  105. 105.

    Champagne P, Li CX (2009) Use of Sphagnum peat moss and crushed mollusk shells in fixed-bed columns for the treatment of synthetic landfill leachate. J Mater Cycles Waste Manage 11(4):339–347

    Article  Google Scholar 

  106. 106.

    Hubbe MA, Hasan SH, Ducoste JJ (2011) Cellulosic substrates for removal of pollutants from aqueous systems: a review. 1. Metals. Bioresources 6(2):2161–U2914

    Google Scholar 

  107. 107.

    Ivanov AA, Yudina NV, Korotkova EI, Lomovsky OI (2008) Antioxidants in the water-soluble carbohydrate fractions of the moss Sphagnum fuscum and Sphagnum peat. Solid Fuel Chem 42(2):68–73

    Article  Google Scholar 

  108. 108.

    Podterob AP, Zubets EV (2002) A history of the medicinal use of plants of the genus Sphagnum. Pharm Chem J 36(4):192–194

    Article  Google Scholar 

  109. 109.

    Martin AM, Acheampong E, Patel TR (1993) Production of astaxanthin by phaffia-rhodozyma using peat hydrolysates as substrate. J Chem Technol Biotechnol 58(3):223–230

    Article  Google Scholar 

  110. 110.

    Barrington S, Kim JS, Wang L, Kim JW (2009) Optimization of citric acid production by Aspergillus niger NRRL 567 grown in a column bioreactor. Korean J Chem Eng 26(2):422–427

    Article  Google Scholar 

  111. 111.

    Barrington S, Kim JW (2008) Response surface optimization of medium components for citric acid production by Aspergillus niger NRRL 567 grown in peat moss. Bioresour Technol 99(2):368–377

    Article  Google Scholar 

  112. 112.

    Dhillon GS, Brar SK, Kaur S, Verma M (2013) Screening of agro-industrial wastes for citric acid bioproduction by Aspergillus niger NRRL 2001 through solid state fermentation. J Sci Food Agric 93(7):1560–1567

    Article  Google Scholar 

  113. 113.

    Kim JW, Barrington S, Sheppard J, Lee B (2006) Nutrient optimization for the production of citric acid by Aspergillus niger NRRL 567 grown on peat moss enriched with glucose. Process Biochem 41(6):1253–1260

    Article  Google Scholar 

  114. 114.

    Martin AM (1983) Adaptation of Agaricus-campestris (Nrrl-2334) to a peat extract medium. Can J Microbiol 29(1):108–110

    Article  Google Scholar 

  115. 115.

    Martin AM, Bailey VI (1985) Production of mushroom mycelium in supplemented acid-extract from peat. Can Inst Food Sci Technol J 18(2):185–188

    Article  Google Scholar 

  116. 116.

    Martin AM (1986) Use of peat and peat extracts for the production of food. Can Agric Eng 28(2):196

    Google Scholar 

  117. 117.

    Martin AM, Goddard S, Bemister P (1993) Production of Candida utilis biomass as aquaculture feed. J Sci Food Agric 61(3):363–370

    Article  Google Scholar 

  118. 118.

    Quierzy P, Therien N, Leduy A (1979) Production of Candida utilis protein from peat extracts. Biotechnol Bioeng 21(7):1175–1190

    Article  Google Scholar 

  119. 119.

    Chintalapati SP (1988) Studies on the growth of fungus Scytalidium acidophilum in hydrolysates from sphagnum peat moss. Memorial University of Newfoundland, Biochemistry

    Google Scholar 

  120. 120.

    Martin AM, Bemister PL (1994) Use of peat extract in the ensiling of fisheries wastes. Waste Manag Res 12(6):467–479

    Article  Google Scholar 

  121. 121.

    Han JS, Rowell RM (1996) Chemical composition of fibers. In: Rowell RM, Rowell J (eds) Boca Raton. Lewis Publishers, CRC Press Inc, Florida

    Google Scholar 

  122. 122.

    Zaitseva N (2009) A polysaccharide extracted from Sphagnum moss as antifungal agent in archaeological conservation. Master’s Thesis. Queen’s University, Kingston, 267 pp

    Google Scholar 

  123. 123.

    Mal’tseva EV, Mikheev KV, Yudina NV, Burkova VN, Il’ina AA (2012) Effect of the nature of an extractant on the composition and properties of lipids extracted from peat. Solid Fuel Chem 46(4):212–216

    Article  Google Scholar 

  124. 124.

    Bishayee A, Ahmed S, Brankov N, Perloff M (2011) Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front Biosci-Landmark 16:980–996

    Article  Google Scholar 

  125. 125.

    Basile A, Sorbo S, Lopez-Saez JA, Cobianchi RC (2003) Effects of seven pure flavonoids from mosses on germination and growth of Tortula muralis HEDW. (Bryophyta) and Raphanus sativus L. (Magnoliophyta). Phytochemistry 62(7):1145–1151

    Article  Google Scholar 

Download references


This work was conducted under financing of the University of Oulu, Chemical Process Engineering research group.

Author information



Corresponding author

Correspondence to Sanna Taskila.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taskila, S., Särkelä, R. & Tanskanen, J. Valuable applications for peat moss. Biomass Conv. Bioref. 6, 115–126 (2016).

Download citation


  • Sphagnum
  • Moss
  • Peat
  • Peat moss
  • Composition
  • Hydrolysis
  • Application
  • Fermentation
  • Preservation
  • Absorption