Skip to main content
Log in

Abstract

In this paper minimal invariant, totally real and CR-submanifolds in the 4-dimensional homogeneous solvable Lie group \(\textrm{Sol}_1^4\) equipped with standard globally conformal Kähler structure are studied. It is proved that the only minimal invariant surfaces of \(\textrm{Sol}_1^4\) are totally geodesic hyperbolic planes. The minimal totally real submanifolds with tangent or normal Lee vector field are classified. Finally, CR-submanifolds with tangent and normal Lee vector field are examined. Three types of minimal proper CR-submanifolds with tangent Lee vector field are discovered and the statement that only minimal CR-submanifold normal to the Lee field is nilradical \(\textrm{Nil}_3\) is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ateş, O., Munteanu, M.I., Nistor, A.I.: Periodic \(J\)-trajectories on \({\mathbb{R} }\times {\mathbb{S} }^3\). J. Geom. Phys. 133, 141–152 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bejancu, A.: \(CR\) submanifolds of a Kaehler manifold. I. Proc. Am. Math. Soc. 69(1), 135–142 (1978)

    MathSciNet  MATH  Google Scholar 

  3. Blair, E.D., Dragomir, S.: CR products in locally conformal Kähler manifolds. Kyushu J. Math. 56, 337–362 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonanzinga, V., Matsumoto, K.: Warped product CR-submanifolds in locally conformal Kaehler manifolds. Period. Math. Hung. 48, 207–221 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, B.-Y.: \(CR\)-submanifolds of a Kähler manifold. I. J. Differ. Geom. 16, 305–322 (1981)

    MATH  Google Scholar 

  6. Chen, B.-Y.: \(CR\)-submanifolds of a Kähler manifold. II. J. Differ. Geom. 16, 493–509 (1981)

    MATH  Google Scholar 

  7. Chen, B.-Y.: Geometry of warped product \(CR\)-submanifolds in Kaehler manifolds. Monatsh. Math. 133, 177–195 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, B.-Y.: Geometry of warped product \(CR\)-submanifolds in Kaehler manifolds. II. Monatsh. Math. 134, 103–119 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, B.-Y., Ogiue, K.: On totally real submanifolds. Trans. Am. Math. Soc. 193, 257–266 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Andrés, L.C., Cordero, L.A., Fernández, M., Mencía, J.J.: Examples of four-dimensional compact locally conformal Kähler solvmanifolds. Geom. Dedic. 29, 227–232 (1989)

    Article  MATH  Google Scholar 

  11. Dragomir, S.: Cauchy–Riemann submanifolds of locally conformal Kaehler manifolds. Geom. Dedic. 28, 181–197 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dragomir, S., Ornea, L.: Locally Conformal Kähler Geometry. Birhäuser, Boston (1998)

    Book  MATH  Google Scholar 

  13. Erjavec, Z., Inoguchi, J.: \(J\)-trajectories in \(4\)-dimensional solvable Lie group \({\rm Sol}_0^4\). Math. Phys. Anal. Geom. 25, Article number 8 (2022)

  14. Erjavec, Z., Inoguchi, J.: \(J\)-trajectories in \(4\)-dimensional solvable Lie groups \({\rm Sol}_1^4\)(submitted)

  15. Erjavec, Z., Inoguchi, J.: Minimal submanifolds in \({\rm Sol}_0^4\). J. Geom. Anal. 33, Article number 274 (2023)

  16. Filipkiewicz, R.: Four dimensional geometries. Ph. D. Thesis, University of Warwick (1983)

  17. Ikuta, K.: \(\alpha \)-submanifold in a locally conformal Kählerian manifold. Natur. Sci. Rep. Ochanomizu Univ. 31(1), 1–12 (1980)

    MathSciNet  MATH  Google Scholar 

  18. Inage, H., Matsumoto, K.: \(4\)-dimensional Kählerian manifolds (preprint) (2004)

  19. Inoue, M.: On surfaces of class \({\rm VII}_0\). Invent. Math. 24, 269–310 (1974)

    Article  MathSciNet  Google Scholar 

  20. Kamishima, Y.: Note on locally conformal Kähler surfaces. Geom. Dedic. 84, 115–124 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kobayashi, S.: Principal fibre bundles with the \(1\)-dimensional toroidal group. Tohoku Math. J. (2) 8(1), 29–45 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lee, K.B., Thuong, S.: Infra-solvmanifolds of \({\rm Sol}_1^4\). J. Korean Math. Soc. 52, 1209–1251 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Matsumoto, K.: On submanifolds of locally conformal Kähler manifolds. Bull. Yamagata Univ. Nat. Sci. 11, 33–38 (1984)

    MATH  Google Scholar 

  24. Matsumoto, K.: On CR-submanifolds of locally conformal Kähler manifolds. J. Korean Math. Soc. 21(1), 49–61 (1984)

    MathSciNet  MATH  Google Scholar 

  25. Matsumoto, K.: On CR-submanifolds of locally conformal Kähler manifolds II. Tensor N. S. 45, 144–150 (1987)

    MATH  Google Scholar 

  26. Matsumoto, K., Pripoae, G.T.: A certain \(4\)-dimensional almost complex manifold and its submanifolds. Rend. Sem. Mat. Messina Ser. II 8(23) (2001/02), 125–138 (2004)

  27. Matsumoto, K., Pripoae, G.T.: Lie group foliated by minimal hypersurfaces. In: Tsagas, G. (ed.) Proceedings of The Conference of Applied Differential Geometry. General Relativity and The Workshop on Global Analysis, Differential Geometry and Lie Algebras. Geometry Balkan Press, pp. 95–102 (2001)

  28. Matsumoto, K., Pripoae, G.T.: Examples of invariant semi-Riemannian metrics on \(4\)-dimensional Lie groups. Rend. Circ. Mat. Palermo 52, 351–366 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Munteanu, M.I.: Minimal submanifolds in \({\mathbb{R} }^{4}\) with a globally conformal Kähler structure. Czech. Math. J. 58(133), 61–78 (2008)

    Article  Google Scholar 

  30. Ogiue, K.: Differential geometry of Kähler submanifolds. Adv. Math. 13, 73–114 (1974)

    Article  MATH  Google Scholar 

  31. Ogiue, K.: Some recent topics in the theory of submanifolds. Sugaku Expos. 4, 21–41 (1991)

    MathSciNet  Google Scholar 

  32. Ornea, L.: Minimal real hypersurfaces in locally conformal Kähler manifolds. An. Ştiinţ. Univ. Al. Cuza Iaşi Secţ. I a Mat. 36(2), 137–142 (1990)

    MathSciNet  MATH  Google Scholar 

  33. Ornea, L.: Locally conformally Kähler manifolds. A selection of results. Lecture notes of Seminario Interdisciplinare di Matematica, vol. 4, pp. 121–152 (2005). arXiv:math/0411503v2 [math.DG]

  34. Ros, A.: A characterization of seven compact Kaehler submanifolds by holomorphic pinching. Ann. Math. 121(2), 377–382 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  35. Shimizu, Y.: On a construction of homogeneous CR-submanifolds in a complex projective space. Comment. Math. Univ. Sancti Pauli 32(2), 203–207 (1983)

    MathSciNet  MATH  Google Scholar 

  36. Thuong, S.V.: Classification of closed manifolds with \({\rm Sol}_1^4\)-geometry. Geom. Dedic. 199, 373–397 (2019)

    Article  MathSciNet  Google Scholar 

  37. Thurston, W.P.: The Geometry and Topology of Three-manifolds. Princeton University, Princeton (1979)

    Google Scholar 

  38. Tricerri, F.: Some examples of locally conformal Kähler manifolds. Rend. Sem. Mat. Univ. Politec. Torino 40, 81–92 (1982)

    MathSciNet  MATH  Google Scholar 

  39. Vaisman, I.: On locally conformal almost Kähler manifolds. Isr. J. Math. 24, 338–351 (1976)

    Article  MATH  Google Scholar 

  40. Vaisman, I.: Non-Kähler metrics on geometric complex surfaces. Rend. Sem. Mat. Univ. Politec. Torino 45(3), 117–123 (1987)

  41. Wall, C.T.C.: Geometries and geometric structures in real dimension 4 and complex dimension 2. Geometry and Topology, Lecture Notes in Math., vol. 1167, pp. 268–292 (1985)

  42. Wall, C.T.C.: Geometric structures on compact complex analytic surfaces. Topology 25(2), 119–153 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewer for careful reading of our manuscript and for the constructive comments and suggestions for improvement of this paper.

Funding

The second author is partially supported by JSPS Kakenhi JP15K04834, JP19K03461 and JP23K03081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zlatko Erjavec.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interests.

Additional information

Dedicated to professor Koichi Ogiue on the occasion of his 80th birthday and in honor of the Order of the Sacred Treasure.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A The solvable Lie group G(k, n)

A The solvable Lie group G(kn)

1.1 A.1

Let us consider the solvable Lie group

$$\begin{aligned} G(k)=\left\{ (x,y,z):=\left. \left( \begin{array}{ccc} e^{kz} &{} 0 &{}x\\ 0 &{} e^{-kz} &{}y\\ 0 &{} 0 &{}1 \end{array}\right) : x,y,z\in {\mathbb {R}} \right\} \right. , \end{aligned}$$

where \(k\in {\mathbb {R}}^{\times }\). The Lie algebra \(\mathfrak {g}(k)\) of G(k) is given by

$$\begin{aligned} \mathfrak {g}(k)=\left\{ (u,v,w):=\left. \left( \begin{array}{ccc} kw &{} 0 &{}u\\ 0 &{} -kw &{}v\\ 0 &{} 0 &{}0 \end{array}\right) : x,y,z\in {\mathbb {R}} \right\} \right. . \end{aligned}$$

We take the following basis of \(\mathfrak {g}(k)\):

$$\begin{aligned} \bar{E}_1=\left( \begin{array}{ccc} 0 &{} 0 &{}1\\ 0 &{} 0 &{}0\\ 0 &{} 0 &{}0 \end{array}\right) , \quad \bar{E}_2=\left( \begin{array}{ccc} 0 &{} 0 &{}0\\ 0 &{} 0 &{}1\\ 0 &{} 0 &{}1 \end{array}\right) , \quad \bar{E}_3=\left( \begin{array}{ccc} k &{} 0 &{}0\\ 0 &{} -k &{}0\\ 0 &{} 0 &{}0 \end{array}\right) . \end{aligned}$$

Then the right invariant vector fields determined by this basis are given by

$$\begin{aligned} \bar{E}_1=\frac{\partial }{\partial x}, \quad \bar{E}_2=\frac{\partial }{\partial y}, \quad \bar{E}_3=\frac{\partial }{\partial z} +k\left( x\frac{\partial }{\partial x} -y\frac{\partial }{\partial y}\right) . \end{aligned}$$

The dual 1-forms of \(\{\bar{E}_1,\bar{E}_2,\bar{E}_3\}\) are given by

$$\begin{aligned} \bar{\Theta }^1=dx-kxdz, \quad \bar{\Theta }^2=dy+kydz, \quad \bar{\Theta }^3=dz. \end{aligned}$$

We equip a right invariant Riemannian metric g of G(k) by \(g=(\bar{\Theta }^1)^2+(\bar{\Theta }^2)^2+(\bar{\Theta }^3)^2\).

Let us choose k so that \(2\cosh k\in {\mathbb {Z}}\smallsetminus \{2\}\), then there exits a discret subgroup \(\varGamma (k)\) of G(k) so that the quotient \(M^{3}(k):=G(k)/\varGamma (k)\) is a compact 3-manifold. Moreover the right invariant 1-forms \(\bar{\Theta }^1\), \(\bar{\Theta }^2\) and \(\bar{\Theta }^3\) descend to 1-forms on \(M^{3}(k)\). For simplicity of notation we denote the induced 1-forms on \(M^{3}(k)\) by the same letters \(\bar{\Theta }^1\), \(\bar{\Theta }^2\) and \(\bar{\Theta }^3\). Hence the Riemannian metric g also descends to \(M^{3}(k)\). The real cohomology groups of \(M^{3}(k)\) are computed as

$$\begin{aligned}{} & {} \textrm{H}^{0}(M^{3}(k);{\mathbb {R}})=\{1\}, \quad \textrm{H}^{1}(M^{3}(k);{\mathbb {R}})=\{[\bar{\Theta }^3]\}, \\{} & {} \textrm{H}^{2}(M^{3}(k);{\mathbb {R}})=\{[\bar{\Theta }^1\wedge \bar{\Theta }^2]\}, \quad \textrm{H}^{3}(M^{3}(k);{\mathbb {R}}) =\{[\bar{\Theta }^1\wedge \bar{\Theta }^2\wedge \bar{\Theta }^3]\}. \end{aligned}$$

Thus the Betti numbers are given by

$$\begin{aligned} b_{1}(M^{3}(k))=b_{2}(M^3(k))=b_3(M^3(k))=1. \end{aligned}$$

1.2 A.2

In 1989, de Andrés, Cordero, Fernández and Mencía [10] gave an interesting family of 4-dimensional solvmanifolds equipped with LCK structure. Let G(kn) be the connected solvable Lie group consisting of matrices of the form

$$\begin{aligned} (x,y,z,t):=\left( \begin{array}{ccccc} e^{kz} &{} 0 &{} 0 &{} 0 &{}x\\ -nye^{kz} &{} 1 &{} 0 &{} 0 &{} t\\ 0 &{} 0 &{} e^{-kz} &{} 0 &{} y\\ 0 &{} 0 &{} 0 &{} 1 &{} z\\ 0 &{} 0 &{} 0 &{} 0 &{}1 \end{array}\right) , \end{aligned}$$

where k, \(n\in {\mathbb {R}}^{\times }\).

The inverse element of (xyzt) is given by

$$\begin{aligned} (x,y,z,t)^{-1}=\left( \begin{array}{ccccc} e^{-kz} &{} 0 &{} 0 &{} 0 &{} -xe^{-kz}\\ ny &{} 1 &{} 0 &{} 0 &{} -nxy-t\\ 0 &{} 0 &{} e^{kz} &{} 0 &{} -ye^{kz}\\ 0 &{} 0 &{} 0 &{} 1 &{} -z\\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \end{array}\right) . \end{aligned}$$

The right Maurer–Cartan form of G(kn) is computed as

$$\begin{aligned}&d(x,y,z,t)\,(x,y,z,t)^{-1}\\&\quad =\begin{pmatrix} ke^{kz}dz &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad dx \\ -ne^{kz}(dy+kydz) &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad dt\\ 0 &{}\quad 0 &{}\quad -ke^{-kz}dz &{}\quad 0 &{}\quad dy\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad dz\\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \end{pmatrix} \left( \begin{array}{ccccc} e^{-kz} &{} 0 &{} 0 &{} 0 &{} -xe^{-kz}\\ ny &{} 1 &{} 0 &{} 0 &{} -nxy-t\\ 0 &{} 0 &{} e^{kz} &{} 0 &{} -ye^{kz}\\ 0 &{} 0 &{} 0 &{} 1 &{} -z\\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \end{array}\right) \\&\quad = \Theta ^1 E_1+\Theta ^2E_2+\Theta ^3 E_3+\Theta ^4E_4, \end{aligned}$$

where

$$\begin{aligned} E_1= & {} \left( \begin{array}{ccccc} 0 &{} 0 &{} 0 &{} 0 &{} 1\\ 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 \end{array}\right) , \quad E_2=\left( \begin{array}{ccccc} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ -n &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 1\\ 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 \end{array}\right) , \\ E_3= & {} \left( \begin{array}{ccccc} k &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} -k &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 1\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 \end{array}\right) , \quad E_4= \left( \begin{array}{ccccc} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 1\\ 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 \end{array}\right) . \end{aligned}$$

and

$$\begin{aligned} \Theta ^1=dx-kx dz, \quad \Theta ^2=dy+kydz, \quad \Theta ^3=dz, \quad \Theta ^4=dt+nx(dy+kydz). \end{aligned}$$

Then \(\{E_1,E_2,E_3,E_4\}\) is a basis of the Lie algebra \(\mathfrak {g}(k,n)\) of G(kn). We denote the right invariant vector fields obtained from \(E_1\), \(E_2\), \(E_3\) and \(E_4\) by right translations by the same letter. Then we get

$$\begin{aligned} E_1=\frac{\partial }{\partial x},\quad E_2=\frac{\partial }{\partial y}-nx\frac{\partial }{\partial t}, \quad E_3=\frac{\partial }{\partial z}+kx \frac{\partial }{\partial x}-ky\frac{\partial }{\partial y}, \quad E_4=\frac{\partial }{\partial t}. \end{aligned}$$

The Riemannian metric \(g=(\Theta ^1)^2+(\Theta ^2)^2+(\Theta ^3)^2+ (\Theta ^4)^2\) is a right invariant Riemannian metric on G(kn). The right invariant metric g has the components

$$\begin{aligned} \begin{pmatrix} 1 &{}\quad 0 &{}\quad -kx &{}\quad 0\\ 0 &{}\quad 1+n^2x^2 &{}\quad ky(1+n^2x^2) &{}\quad nx\\ -kx &{}\quad ky(1+n^2x^2) &{}\quad 1+k^2(x^2+y^2+n^2x^2y^2) &{}\quad knxy\\ 0 &{}\quad nx &{}\quad knxy &{}\quad 1 \end{pmatrix} \end{aligned}$$

relative to the coordinates (xyzt).

The Riemannian 4-manifold \(({\mathbb {R}}^2(x,y,z,t),g)\) can be seen in a paper [26, §3] by Matsumoto and Pripoae.

The Levi–Civita connection is given by ([10, p. 230]:

$$\begin{aligned} \begin{array}{llll} \nabla _{E_1}E_1=-kE_3, &{}\nabla _{E_1}E_2=-\frac{n}{2}E_4, &{} \nabla _{E_1}E_3=k E_1, &{} \nabla _{E_1}E_4=\frac{n}{2}E_2, \\ \nabla _{E_2}E_1=\frac{n}{2}E_4, &{} \nabla _{E_2}E_2=k E_3, &{} \nabla _{E_2}E_3=-k E_2, &{} \nabla _{E_2}E_4=-\frac{n}{2}E_1, \\ \nabla _{E_3}E_1=0, &{}\nabla _{E_3}E_2=0, &{} \nabla _{E_3}E_3=0, &{} \nabla _{E_3}E_4=0, \\ \nabla _{E_4}E_1=\frac{n}{2}E_2, &{}\nabla _{E_4}E_2=-\frac{n}{2}E_1, &{} \nabla _{E_4}E_3=0 &{} \nabla _{E_4}E_4=0. \end{array} \end{aligned}$$

Then we have

$$\begin{aligned} {[}E_1,E_2]=-n\, E_4, \quad [E_1,E_3]=kE_1, \quad [E_2,E_3]=-kE_2. \end{aligned}$$

1.3 A.3

Let us choose \(n=k\in {\mathbb {R}}^{\times }\) and introduce a right invariant g-orthogonal almost complex structure J on G(kk) by

$$\begin{aligned} JE_1=E_4, \quad JE_2=E_3, \quad JE_3=-E_2, \quad JE_4=-E_1. \end{aligned}$$

Then one can see that (G(kk), Jg) is a GCK surface. The resulting GCK surface coincides with \({\mathbb {R}}^{4}(k)\) studied in [18, 26, 27, 29]. Note that J has components

$$\begin{aligned} J=\begin{pmatrix} 0 &{}\quad 0 &{}\quad 0 &{}\quad -1\\ 0 &{}\quad -ky &{}\quad -(1+k^2y^2) &{}\quad 0\\ 0 &{}\quad 1 &{}\quad ky &{}\quad 0\\ 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 \end{pmatrix} \end{aligned}$$

relative to the coordinated (xyzt).

Kamishima [20] proved G(1, 1) is holomorphically isometric to the model space \(\textrm{Sol}^{4}_{1}\) equipped with Tricerri’s LCK structure. As a result the GCK surface \({\mathbb {R}}^4(1)\) studied in [29] is identified with \(\textrm{Sol}_1^4\).

1.4 A.4

Next we consider almost complex structures on G(kn) for \(n\not =0\) and \(k\not =0\). Let us introduce a right invariant almost complex structure \(\bar{J}_{k,n}\) on G(kn) by

$$\begin{aligned} \bar{J}_{k,n}E_1=\frac{n}{k}\,E_4, \quad \bar{J}_{k,n}E_2=E_3, \quad \bar{J}_{k,n}E_3=-E_2, \quad \bar{J}_{k,n}E_4=-\frac{k}{n}\,E_1. \end{aligned}$$

Relative to the global coordinates (xyzt), \(\bar{J}_{k,n}\) has components:

$$\begin{aligned} \bar{J}_{k,n}=\begin{pmatrix} 0 &{}\quad 0 &{}\quad 0 &{}\quad -\frac{k}{n}\\ 0 &{}\quad -ky &{}\quad -(1+k^{2}y^{2}) &{}\quad 0\\ 0 &{}\quad 1&{}\quad ky &{}\quad 0\\ \frac{n}{k} &{}\quad 0 &{}\quad 0 &{}\quad 0 \end{pmatrix}. \end{aligned}$$

The almost complex structure \(\bar{J}_{k,n}\) is integrable for arbitrary k and n. However it is g-orthogonal on G(kn) if and only if \(k=-\pm n\).

1.5 A.5

Let us choose \(n\in {\mathbb {Z}}\smallsetminus \{0\}\) and \(k\in {\mathbb {R}}^{\times }\) so that \(2\cosh k\in {\mathbb {Z}}\smallsetminus \{2\}\).

Here we recall the following fundamental theorem due to Kobayashi [21].

Theorem A.1

There is a bijective correspondence between equivalence class of principal circle bundles over a manifold M and the cohomology group \(\textrm{H}^2(M;{\mathbb {Z}})\). For a prescribed integral closed 2-form \(\Omega \) on M, there exists a principal circle bundle P over M with connection form \(\zeta \) whose curvature form is \(\Omega \).

Since \(\textrm{H}^{2}(M^{3}(k);{\mathbb {R}})= \{[\bar{\Theta }^1\wedge \bar{\Theta }^2]\}\), there exists \(\lambda \in {\mathbb {R}}\) such that \(\lambda [\bar{\Theta }^1\wedge \bar{\Theta }^2]\) is integral. Hence for each \(n\in {\mathbb {Z}}\setminus \{0\}\), there exists a principal circle bundle \(M^{4}(k,n)\) over G(k) corresponding to \(\lambda [\bar{\Theta }^1\wedge \bar{\Theta }^2] \in \textrm{H}^{2}(M^{3}(k);{\mathbb {Z}})\). The connection form of this bundle has curvature \(n\lambda \bar{\Theta }^1\wedge \bar{\Theta }^2\). de Andrés, Cordero, Fernández and Mencía [10] proved that there exists a discrete subgroup \(\varGamma (k,n)\) of G(kn) such that the compact quotient \(G(k,n)/\varGamma (k,n)\) is \(M^{4}(k,n)\). The Riemannian metric g on G(kn) and the complex structure \(\bar{J}_{k,n}\) descend to the compact quotient \(M^4(k,n)\). The resulting structure is an LCK structure on \(M^{4}(k,n)\) (For more details, see [10] and [12, pp. 26–27]). The Betti numbers of \(M^{4}(k,n)\) are given by [10]:

$$\begin{aligned} b_1(M^{4}(k,n))=1, \quad b_2(M^{4}(k,n))=0, \quad b_3(M^{4}(k,n))=1. \end{aligned}$$

Hence \(M^{4}(k,n)\) can not be Kähler.

1.6 A.6

On the other hand, Matsumoto and Pripoae [26] introduced the following almost complex structure (see [26, (3.7)])

$$\begin{aligned} J_{k,n,\lambda }=\begin{pmatrix} 0 &{}\quad k(1-\lambda ^{-1})x&{} \quad k^2(1-\lambda ^{-1})xy &{}\quad -\frac{k}{n}\lambda ^{-1}\\ 0 &{}\quad -ky &{}\quad -(1+k^2y^2) &{}\quad 0 \\ 0 &{}\quad 1 &{}\quad ky &{}\quad 0 \\ \frac{n}{k}\lambda &{}\quad 0 &{}\quad 0 &{}\quad 0 \end{pmatrix},\quad \lambda \in {\mathbb {R}}^{\times } \end{aligned}$$

on G(kn). To get complex structures, they choose \(\lambda \) as \(\lambda =k/n\), then \(J_{k,n,k/n}\) is

$$\begin{aligned} J_{k,n,k/n}=\begin{pmatrix} 0 &{}\quad (k-n)x&{}\quad k(k-n)xy &{}\quad -1\\ 0 &{}\quad -ky &{}\quad -(1+k^2y^2) &{}\quad 0 \\ 0 &{}\quad 1 &{}\quad ky &{}\quad 0 \\ 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 \end{pmatrix}. \end{aligned}$$

This is the correct formula for [26, (3.10)]. It should be remarked that \(\bar{J}_{k,n}=J_{k,n,k/n}\) if and only if \(n=k\). Moreover Matsumoto and Pripoae [26, Theorem 3.3] showed that \(J_{k,n,k/n}\) is integrable if and only if \(k=n\).

As a result on G(kk), all the complex structures J, \(\bar{J}_{k,k}\) and \(J_{k,k,1}\) are identical.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erjavec, Z., Inoguchi, Ji. Minimal submanifolds in \(\textrm{Sol}_1^4\). Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 156 (2023). https://doi.org/10.1007/s13398-023-01489-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-023-01489-5

Keywords

Mathematics Subject Classification

Navigation