Skip to main content
Log in

On the existence of solutions to a general mean field equation of nonlinear diffusion with the Newtonian potential pressure

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

We prove an existence and uniqueness of weak solutions of a general mean field equation of nonlinear diffusion with the Newtonian potential pressure. Moreover, we study the finite speed of propagation of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Wasserstein Space of Probability measures. Birkäuser, Basel (2005)

    MATH  Google Scholar 

  2. Ambrosio, L., Serfaty, S.: A gradient flow approach to an evolution problem arising in superconductivity. Commun. Pure Appl. Math. 61(11), 1495–1539 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Mainini, E., Serfaty, S.: Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices. Ann. IHP Anal. Non linéaire 28(2), 217–246 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertozzi, A.L., Laurent, T., Léger, F.: Aggregation and spreading via the Newtonian potential the dynamics of patch solutions. Math. Models Methods Appl. Sci. 22, 1140005 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biler, P., Imbert, C., Karch, G.: The nonlocal porous medium equation: Barenblatt profiles and other weak solutions. Arch. Ration. Mech. Anal. 215, 497–529 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L.A., Vazquez, J.L.: Nonlinear porous medium flow with fractional potential pressure. Arch. Rational Mech. Anal. 202, 537–565 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli, L.A., Soria, F., Vázquez, J.L.: Regularity of solutions of the fractional porous medium flow. J. Eur. Math. Soc. 15, 1701–1746 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carrillo, J.A., Gómez-Castro, D., Vázquez, J.L.: A fast regularisation of a Newtonian vortex equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 39, 705–747 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carrillo, J.A., Gómez-Castro, D., Vázquez, J.L.: Vortex formation for a non-local interaction model with Newtonian repulsion and superlinear mobility. Adv. Nonlinear Anal. 11, 937–967 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chapman, S.J., Rubinstein, J., Schatzman, M.: A mean-field model for superconducting vortices. Eur. J. Appl. Math. 7, 97–111 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ladyzhenskaya, O. A., Solonnikov, V. A., Ural’tseva, N. N.: Linear and Quasilinear Equations of Parabolic Type. Transl. Math. Monographs, 23, Amer. Math. Soc. (1968)

  12. Lin, F.H., Zhang, P.: On the hydrodynamic limit of Ginzburg–Landau vortices. Discrete Contain. Dyn. Syst. 6, 121–142 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dao, N.A., Díaz, J.I.: Energy and large time estimates for nonlinear porous medium flow with nonlocal pressure in \(\mathbb{R} ^N\). Arch. Rat. Mech. Anal. 238, 299–345 (2020)

    Article  MATH  Google Scholar 

  14. Dolbeault, J., Zhang, A.: Flows and functional inequalities for fractional operators. Appl. Anal. 96, 1547–1560 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Du, Q., Zhang, P.: Existence of weak solutions to some vortex density models. SIAM J. Math. Anal. 34, 1279–1299 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge texts in applied mathematics, (2002)

  17. Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg–Landau model, Progress 3 in Nonlinear Differential Equations and their Applications, vol. 70. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  18. Serfaty, S., Vázquez, J.L.: A mean field equation as limit of nonlinear diffusion with fractional Laplacian operators. Calc. Var. PDEs 49, 1091–1120 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stan, D., del Teso, F., Vázquez, J.L.: Finite and infinite speed of propagation for porous medium equations with fractional pressure. J. Differ. Equ. 260, 1154–1199 (2016)

    Article  MATH  Google Scholar 

  20. Stan, D., del Teso, F., Vázquez, J.L.: Existence of weak solutions for porous medium equations with nonlocal pressure. Arch. Ration. Mech. Anal. 233, 451–496 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  22. Taylor, M. E.: Partial Differential Equations. III: Nonlinear Equations, 2nd edn, xxii, p. 715. Applied Mathematical Sciences 117. Springer, New York (2011)

  23. Loeper, G.: Uniqueness of the solution to the Vlasov–Poisson system with bounded density. J. Math. Pures Appl. (9) 86(1), 68–79 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Weinan, E.: Dynamics of vortex liquids in Ginzburg–Landau theories with applications to superconductivity. Phys. Rev. B 50, 1126–1135 (1994)

    Article  Google Scholar 

  25. Zhang, P., Zheng, Y.: On the existence and uniqueness of solutions to an asymptotic equation of a variational wave equation. Acta Math. Sin. 15, 115–130 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referees for their constructive comments which were very helpful for improving our manuscript. This research is funded by University of Economics Ho Chi Minh City (UEH), Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Anh Dao.

Additional information

Dedicated to Professor Jesus Ildefonso Díaz on the occasion of his 70th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 4.1

Let \(v_0\in L^1({\mathbb {R}}^N)\cap L^\infty ({\mathbb {R}}^N)\). Assume that for any \(1<q<\infty \), v(xt) satisfies

$$\begin{aligned} \Vert v(.,t)\Vert _{L^q({\mathbb {R}}^N)} \le \Vert v_0\Vert _{L^q({\mathbb {R}}^N)},\quad \text {for } \, t\in (0,T). \end{aligned}$$

Then, we have

$$\begin{aligned} \Vert v(.,t)\Vert _{L^\infty ({\mathbb {R}}^N)} \le \Vert v_0\Vert _{L^\infty ({\mathbb {R}}^N)},\quad \text {for } \, t\in (0,T)\,. \end{aligned}$$
(4.1)

Proof of Lemma 4.1

We first claim that \(v(.,t)\in L^\infty ({\mathbb {R}}^N)\) for \(t\in (0,T)\). Indeed, assume a contradiction that there is a \(t_0\in (0,T)\) such that

$$\begin{aligned} \Vert v(.,t_0)\Vert _{L^\infty ({\mathbb {R}}^N)}=+\infty \,. \end{aligned}$$
(4.2)

Now, let us set \(A_n = \{x\in {\mathbb {R}}^N: |v(x,t_0)| > n\}\) for \(n\ge 1\). For \(1<q<\infty \), it is obvious that

$$\begin{aligned} n|A_n|^{1/q} \le \Vert v(.,t_0)\Vert _{L^q({\mathbb {R}}^N)}\le \Vert v_0\Vert _{L^q({\mathbb {R}}^N)} \le \Vert v_0\Vert _X . \end{aligned}$$

Hence, we get \(\displaystyle \lim \nolimits _{n\rightarrow \infty } |A_n| = 0\). This contradicts to (4.2).

Thus, we obtain the claim.

Next, we show that for any \(t\in (0,T)\),

$$\begin{aligned} \Vert v(.,t)\Vert _{L^q({\mathbb {R}}^N)}\rightarrow \Vert v(.,t)\Vert _{L^\infty ({\mathbb {R}}^N)} ,\,\text { when } \, q\rightarrow \infty \,. \end{aligned}$$
(4.3)

Fix \(q_0>1\). Thanks to the interpolation inequality, for any \(q\in (q_0,\infty )\) we have

$$\begin{aligned} \Vert v(.,t)\Vert _{L^q({\mathbb {R}}^N)} \le \Vert v(.,t)\Vert ^{1-\frac{q_0}{q}}_{L^\infty ({\mathbb {R}}^N)} \Vert v(.,t)\Vert ^{\frac{q_0}{q}}_{L^{q_0}({\mathbb {R}}^N)} , \end{aligned}$$

which yields

$$\begin{aligned} \limsup _{q\rightarrow \infty } \Vert v(.,t)\Vert _{L^q({\mathbb {R}}^N)} \le \Vert v(.,t)\Vert _{L^\infty ({\mathbb {R}}^N)} \,. \end{aligned}$$
(4.4)

On the other hand, let \(E_\lambda = \{ x\in {\mathbb {R}}^N: |v(x,t)|>\lambda \Vert v(.,t)\Vert _{L^\infty ({\mathbb {R}}^N)}\}\), for \(\lambda \in (0,1)\). Then, we observe that \(|E_\lambda |>0\), \(\Vert v(.,t)\Vert _{L^{q_0}(E_\lambda )}>0\), and

$$\begin{aligned} \Vert v(.,t)\Vert _{L^q({\mathbb {R}}^N)} \ge \big (\lambda \Vert v(.,t)\Vert _{L^\infty ({\mathbb {R}}^N)} \big )^{1-\frac{q_0}{q}} \Vert v(.,t)\Vert ^\frac{q_0}{q}_{L^{q_0}(E_\lambda )} , \end{aligned}$$

hence \(\liminf \nolimits _{q\rightarrow \infty } \Vert v(.,t)\Vert _{L^q({\mathbb {R}}^N)} \ge \lambda \Vert v(.,t)\Vert _{L^\infty ({\mathbb {R}}^N)}\).

Since the last inequality holds for \(\lambda \in (0,1)\), then we obtain

$$\begin{aligned} \liminf _{q\rightarrow \infty } \Vert v(.,t)\Vert _{L^q({\mathbb {R}}^N)} \ge \Vert v(.,t)\Vert _{L^\infty ({\mathbb {R}}^N)} . \end{aligned}$$

Thus, (4.3) follows from (4.4) and the last inequality.

Finally, (4.1) is done by applying (4.3) to v(., t) and \(v_0\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dao, N.A. On the existence of solutions to a general mean field equation of nonlinear diffusion with the Newtonian potential pressure. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 63 (2023). https://doi.org/10.1007/s13398-023-01395-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-023-01395-w

Keywords

Mathematics Subject Classification

Navigation