Skip to main content
Log in

Abstract

This paper introduces some inverse sequences of different polyhedra all based on finite approximations of a compact metric space so they can be used to capture the shape type of the original space. It is shown that they are HPol-expansions, proving the so-called general principle. We use these sequences to compute explicitly some inverse persistent homology groups of a space and measure its errors in the approximation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alexandroff, P.: Untersuchungen über Gestalt und Lage abgeschlossener Mengen beliebiger Dimension. Ann. Math. (2) 30(1–4), 101–187 (1928/29). https://doi.org/10.2307/1968272

  2. Alexandroff, P.: Diskrete raüme. Math. Sb. 2, 501–518 (1937)

    MATH  Google Scholar 

  3. Alonso-Morón, M., Cuchillo-Ibañez, E., Luzón, A.: \(\epsilon \)-connectedness, finite approximations, shape theory and coarse graining in hyperspaces. Phys. D 237(23), 3109–3122 (2008). https://doi.org/10.1016/j.physd.2008.05.016

    Article  MathSciNet  MATH  Google Scholar 

  4. Alonso-Morón, M., Gómez, A.G.: Upper semifinite hyperspaces as unifying tools in normal Hausdorff topology. Topol. Appl. 154(10), 2142–2153 (2007). https://doi.org/10.1016/j.topol.2006.03.031

    Article  MathSciNet  MATH  Google Scholar 

  5. Alonso-Morón, M., González Gómez, A.: The Hausdorff metric and classifications of compacta. Bull. Lond. Math. Soc. 38(2), 314–322 (2006). https://doi.org/10.1112/S0024609305018382

    Article  MathSciNet  MATH  Google Scholar 

  6. Alonso-Morón, M., González Gómez, A.: Homotopical properties of upper semifinite hyperspaces of compacta. Topol. Appl. 155(9), 972–981 (2008). https://doi.org/10.1016/j.topol.2007.12.011

    Article  MathSciNet  MATH  Google Scholar 

  7. Amézquita, E.J., Quigley, M.Y., Ophelders, T., Munch, E., Chitwood, D.H.: The shape of things to come: topological data analysis and biology, from molecules to organisms. Dev. Dyn. 249(7), 816–833 (2020). https://doi.org/10.1002/dvdy.175

    Article  Google Scholar 

  8. Barmak, J.A.: Algebraic Topology of Finite Topological Spaces and Applications. Lecture Notes in Mathematics, vol. 2032. Springer, Heidelberg (2011)

    Book  Google Scholar 

  9. Barmak, J.A., Minian, E.G.: One-point reductions of finite spaces, \(h\)-regular CW-complexes and collapsibility. Algebraic Geom. Topol. 8(3), 1763–1780 (2008a). https://doi.org/10.2140/agt.2008.8.1763

    Article  MathSciNet  MATH  Google Scholar 

  10. Barmak, J.A., Minian, E.G.: Simple homotopy types and finite spaces. Adv. Math. 218(1), 87–104 (2008b). https://doi.org/10.1016/j.aim.2007.11.019

    Article  MathSciNet  MATH  Google Scholar 

  11. Barmak, J.A., Minian, E.G.: Automorphism groups of finite posets. Discrete Math. 309(10), 3424–3426 (2009). https://doi.org/10.1016/j.disc.2008.09.026

    Article  MathSciNet  MATH  Google Scholar 

  12. Bilski, P.: On the inverse limits of \(T_0\)-alexandroff spaces. Glasnik Matematički 52(72), 207–219 (2017). https://doi.org/10.3336/gm.52.2.01

    Article  MathSciNet  MATH  Google Scholar 

  13. Borsuk, K.: Concerning homotopy properties of compacta. Fund. Math. 62, 223–254 (1968). https://doi.org/10.4064/fm-62-3-223-254

    Article  MathSciNet  MATH  Google Scholar 

  14. Borsuk, K.: Theory of Shape, Lecture Notes Series, vol. 28. Matematisk Institute, Aarhus Univ., Aarhus (1971)

  15. Borsuk, K.: Theory of shape, Monografie Matematyczne vol. 59. Polish Scientific Publishers, Warszawa (1975)

  16. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. (N.S.) 46, 255–308 (2009). https://doi.org/10.1090/S0273-0979-09-01249-X

    Article  MathSciNet  MATH  Google Scholar 

  17. Clader, E.: Inverse limits of finite topological spaces. Homol. Homotopy Appl. 11(2), 223–227 (2009). (hha/1296138519)

    Article  MathSciNet  Google Scholar 

  18. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007). https://doi.org/10.1007/s00454-006-1276-5

    Article  MathSciNet  MATH  Google Scholar 

  19. Dowker, C.H.: Homology groups of relations. Ann. Math. (2) 56, 84–95 (1952). https://doi.org/10.2307/1969768

    Article  MathSciNet  MATH  Google Scholar 

  20. Dydak, J., Segal, J.: Shape Theory: An Introduction, Lecture Notes in Math, vol. 688. Springer, Berlin (1978)

    Book  Google Scholar 

  21. Edelsbrunner, H., Harer, J.: Persistent homology—a survey. In: Surveys on Discrete and Computational Geometry, Contemp. Math., vol. 453, pp. 257–282. Amer. Math. Soc., Providence (2008)

  22. Edelsbrunner, H., Harer, J.L.: Computational Topology. An Introduction. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  23. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002). https://doi.org/10.1007/s00454-002-2885-2

    Article  MathSciNet  MATH  Google Scholar 

  24. Fox, R.H.: On shape. Fund. Math. 74(1), 47–71 (1972). https://doi.org/10.4064/fm-74-1-47-71

    Article  MathSciNet  MATH  Google Scholar 

  25. Freudenthal, H.: Entwicklungen von Räumen und ihren Gruppen. Compos. Math. 4, 145–234 (1937)

    MATH  Google Scholar 

  26. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. (N.S.) 45(1), 61–75 (2008). https://doi.org/10.1090/S0273-0979-07-01191-3

    Article  MathSciNet  MATH  Google Scholar 

  27. Ghrist, R.: Elementary Applied Topology, ed. 1.0, Createspace (2014)

  28. Gidea, M., Katz, Y.: Topological data analysis of financial time series: landscapes of crashes. Phys. A 491, 820–834 (2018). https://doi.org/10.1016/j.physa.2017.09.028

    Article  MathSciNet  MATH  Google Scholar 

  29. Kopperman, R.D., Tkachuk, V.V., Wilson, R.G.: The approximation of compacta by finite \(T_0\)-spaces. Quaest. Math. 26(3), 355–370 (2003). https://doi.org/10.2989/16073600309486066

    Article  MathSciNet  MATH  Google Scholar 

  30. Kopperman, R.D., Wilson, R.G.: Finite approximation of compact Hausdorff spaces. In: Proceedings of the 12th Summer Conference on General Topology and its Applications (North Bay, ON, 1997), vol. 22, pp. 175–200 (1997)

  31. Mardešić, S.: Thirty years of shape theory. Math. Commun. 2(1), 1–12 (1997)

    MathSciNet  MATH  Google Scholar 

  32. Mardešić, S.: Absolute neighborhood retracts and shape theory. In: History of Topology, pp. 241–269. North-Holland, Amsterdam (1999)

    Chapter  Google Scholar 

  33. Mardešić, S., Segal, J.: Shapes of compacta and ANR-systems. Fund. Math. 72(1), 41–59 (1971). https://doi.org/10.4064/fm-72-1-41-59

    Article  MathSciNet  MATH  Google Scholar 

  34. Mardešić, S., Segal, J.: Shape Theory. The Inverse System Approach, North-Holland Mathematical Library, vol. 26. North-Holland Publishing Co., Amsterdam (1982)

  35. McCord, M.C.: Singular homology groups and homotopy groups of finite topological spaces. Duke Math. J. 33, 465–474 (1966). https://doi.org/10.4064/fm-59-3-331-341

    Article  MathSciNet  MATH  Google Scholar 

  36. Michael, E.: Topologies on spaces of subsets. Trans. Am. Math. Soc. 71, 152–182 (1951). https://doi.org/10.2307/1990864

    Article  MathSciNet  MATH  Google Scholar 

  37. Mondéjar Ruiz, D., Morón, M.A.: Reconstruction of compacta by finite approximations and inverse persistence. Rev. Mat. Complut. (2020). https://doi.org/10.1007/s13163-020-00356-w

    Article  MATH  Google Scholar 

  38. Morita, K.: The Hurewicz isomorphism theorem on homotopy and homology pro-groups. Proc. Japan Acad. 50, 453–457 (1974)

    MathSciNet  MATH  Google Scholar 

  39. Nadler, S.B., Jr.: Hyperspaces of sets. A text with research questions, Monographs and Textbooks in Pure and Applied Mathematics, vol. 49. Marcel Dekker Inc, New York (1978)

  40. Robins, V.: Towards computing homology from finite approximations. In: Proceedings of the 14th Summer Conference on General Topology and its Applications (Brookville, NY, 1999), vol. 24, pp. 503–532 (2001)

  41. Spanier, E.H.: Algebraic Topology. Corrected reprint. Springer, New York (1981)

    Book  Google Scholar 

  42. Stong, R.E.: Finite topological spaces. Trans. Am. Math. Soc. 123, 325–340 (1966). https://doi.org/10.2307/1994660

    Article  MathSciNet  MATH  Google Scholar 

  43. Vejdemo-Johansson, M.: Sketches of a platypus: a survey of persistent homology and its algebraic foundations. In: Algebraic Topology: Applications and New Directions, Contemp. Math., vol. 620, pp. 295–319. Amer. Math. Soc., Providence (2014)

  44. Zhu, X.: Persistent homology: an introduction and a new text representation for natural language processing. In: IJCAI, pp. 1953–1959 (2013)

  45. Zomorodian, A.J.: Topology for computing, Cambridge Monographs on Applied and Computational Mathematics, vol. 16. Cambridge University Press, Cambridge (2005)

Download references

Acknowledgements

The author wishes to thank the valuable help, comments and support from his thesis advisor M.A. Morón for the results obtained in this article.

Funding

This work has been partially supported by the research project PGC2018-098321-B-I00 (MICINN). The author has been also supported by the FPI Grant BES-2010-033740 of the project MTM2009-07030 (MICINN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Mondéjar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondéjar, D. Polyhedral expansions of compacta associated to finite approximations. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 116, 99 (2022). https://doi.org/10.1007/s13398-022-01236-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-022-01236-2

Keywords

Mathematics Subject Classification

Navigation