Skip to main content
Log in

On non-local nonlinear elliptic equations involving an eigenvalue problem

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

The existence and multiplicity of solutions for a class of non-local elliptic boundary value problems with superlinear source functions are investigated in this paper. Using variational methods, we examine the changes arise in the solution behaviors as a result of the non-local effect. Comparisons are made of the results here with those of the elliptic boundary value problem in the absence of the non-local term under the same prescribed conditions to highlight this effect of non-locality on the solution behaviors. Our results here demonstrate that the complexity of the solution structures is significantly increased in the presence of the non-local effect with the possibility ranging from no permissible positive solution to three positive solutions and, contrary to those obtained in the absence of the non-local term, the solution profiles also vary depending on the superlinearity of the source functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alama, S., Tarantello, G.: On semilinear elliptic equations with indefinite nonlinearities. Calc. Var. Partial Differ. Equ. 1, 439–475 (1993)

    Article  MathSciNet  Google Scholar 

  2. Alves, C.O., Figueiredo, G.M.: Multi-bump solutions for a Kirchhoff-type problem. Adv. Nonlinear Anal. 5, 1–26 (2016)

    Article  MathSciNet  Google Scholar 

  3. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  Google Scholar 

  4. Arosio, A., Panizzi, S.: On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc. 348, 305–330 (1996)

    Article  MathSciNet  Google Scholar 

  5. Bensedki, A., Bouchekif, M.: On an elliptic equation of Kirchhoff-type with a potential asymptotically linear at infinity. Math. Comput. Modell. 49, 1089–1096 (2009)

    Article  MathSciNet  Google Scholar 

  6. Brown, K.J., Zhang, Y.: The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function. J. Differ. Equ. 193, 481–499 (2003)

    Article  MathSciNet  Google Scholar 

  7. Chabrowski, J., Costa, D.G.: On a class of Schrödinger-type equations with indefinite weight functions. Commun. Partial Differ. Equ. 33, 1368–1394 (2008)

    Article  Google Scholar 

  8. Chen, J.: Multiple positive solutions to a class of Kirchhoff equation on \({\mathbb{R}}^3\) with indefinite nonlinearity. Nonlinear Anal. 96, 134–145 (2014)

    Article  MathSciNet  Google Scholar 

  9. Chen, C., Kuo, Y., Wu, T.F.: The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J. Differ. Equ. 250, 1876–1908 (2011)

    Article  MathSciNet  Google Scholar 

  10. Dai, G.: Eigenvalue, global bifurcation and positive solutions for a class of fully nonlinear problems. Topol. Methods Nonlinear Anal. 48, 213–233 (2016)

    MathSciNet  Google Scholar 

  11. D’Ancona, P., Spagnolo, S.: Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent. Math. 108, 247–262 (1992)

    Article  MathSciNet  Google Scholar 

  12. Deng, Y., Peng, S., Shuai, W.: Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in \({\mathbb{R}}^3\). J. Funct. Anal. 269, 3500–3527 (2015)

    Article  MathSciNet  Google Scholar 

  13. Deng, Y., Shuai, W.: Sign-changing multi-bump solutions for Kirchhoff-type equations in \({\mathbb{R}}^3\). Discrete Contin. Dyn. Syst. A 38, 3139–3168 (2018)

    Article  MathSciNet  Google Scholar 

  14. Ding, L., Meng, Y.J., Xiao, S.W., Zhang, J.L.: Existence of two positive solutions for indefinite Kirchhoff equations in \({\mathbb{R}}^3\). Electron. J. Differ. Equ. 2016, 1–22 (2016)

    Article  Google Scholar 

  15. Ekeland, I.: Convexity Methods in Hamiltonian Mechanics. Springer, New York (1990)

    Book  Google Scholar 

  16. Figueiredo, G.M., Ikoma, N., Júnior, J.R.S.: Existence and concentration result for the Kirchhoff-type equations with general nonlinearities. Arch. Rational Mech. Anal. 213, 931–979 (2014)

    Article  MathSciNet  Google Scholar 

  17. Guo, Z.: Ground states for Kirchhoff equations without compact condition. J. Differ. Equ. 259, 2884–2902 (2015)

    Article  MathSciNet  Google Scholar 

  18. He, X., Zou, W.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \({\mathbb{R}}^3\). J. Differ. Equ. 252, 1813–1834 (2012)

    Article  Google Scholar 

  19. Ikoma, N.: Existence of ground state solutions to the nonlinear Kirchhoff type equations with potentials. Discrete Contin. Dyn. Syst. A 35, 943–966 (2015)

    Article  MathSciNet  Google Scholar 

  20. Júnior, J.R.S., Siciliano, G.: Positive solutions for a Kirchhoff problem with vanishing nonlocal term. J. Differ. Equ. 265, 2034–2043 (2018)

    Article  MathSciNet  Google Scholar 

  21. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

    MATH  Google Scholar 

  22. Liang, Z., Li, F., Shi, J.: Positive solutions of Kirchhoff-type non-local elliptic equation: a bifurcation approach. Proc. R. Soc. Edinburgh 147A, 875–894 (2017)

    Article  MathSciNet  Google Scholar 

  23. Lions, J.L.: On some questions in boundary value problems of mathematical physics. In: Contemporary Developments in Mechanics and Partial Differential Equations, North-Holland Mathematics Studies, vol. 30, 284-346 (Amsterdam: North-Holland) (1978)

  24. Li, G., Ye, H.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \({\mathbb{R}}^3\). J. Differ. Equ. 257, 566–600 (2014)

    Article  Google Scholar 

  25. Pohozaev, S.I.: A certain class of quasilinear hyperbolic equations. Mat. Sb. (N.S.) 96(138), 152–166, 168 (in Russian) (1975)

  26. Sun, J., Wu, T.F.: Existence and multiplicity of solutions for an indefinite Kirchhoff type equation in bounded domains. Proc. R. Soc. Edinburgh Sect. A 146, 435–448 (2016)

    Article  MathSciNet  Google Scholar 

  27. Sun, J., Wu, T.F.: Steep potential well may help Kirchhoff type equations to generate multiple solutions. Nonlinear Anal. 190, 111609 (2020)

    Article  MathSciNet  Google Scholar 

  28. Tang, X., Chen, S.: Ground state solutions of Nehari–Pohozaev type for Kirchhoff-type problems with general potentials. Calc. Var. Partial Differ. Equ. 56, 110 (2017)

    Article  MathSciNet  Google Scholar 

  29. Keller, H.B.: Lectures on Numerical Methods in Bifurcation Problems. Springer, Berlin (1987)

    Google Scholar 

  30. Kuo, Y., Lin, W., Shieh, S., Wang, W.: A minimal energy tracking method for non-radially symmetric solutions of coupled nonlinear Schrödinger equations. J. Comput. Phys. 228, 7941–7956 (2009)

    Article  MathSciNet  Google Scholar 

  31. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  Google Scholar 

Download references

Acknowledgements

K.-H Wang was supported in part by the Ministry of Science and Technology, Taiwan (Grant No. 108-2811-M-390-500) and T.-F. Wu was supported in part by the Ministry of Science and Technology, Taiwan (Grant No. 108-2115-M-390-007-MY2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsung-fang Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Cy., Kuo, Yc., Wang, KH. et al. On non-local nonlinear elliptic equations involving an eigenvalue problem. RACSAM 116, 45 (2022). https://doi.org/10.1007/s13398-021-01190-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-021-01190-5

Keywords

Mathematics Subject Classification

Navigation