Skip to main content
Log in

A global result for a degenerate quasilinear eigenvalue problem with discontinuous nonlinearities

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper considers a class of degenerate quasilinear elliptic equations with discontinuous nonlinearities. The existence of positive weak solutions and S-solutions is discussed using variational methods. The results assert that the \((\lambda ,a)\)-space of the parameters involved is divided into three regions - no solution, at least one S-solution, and at least two weak solutions (one is S-solution among them), in each region respectively. The regions are separated by a continuous, nondecreasing curve and line segment. Further, there exists an S-solution at each point on the separating curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Data sharing and materials are not applicable to this article as no datasets and materials were generated or analysed during the current study.

Code Availability

Not applicable.

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier/Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  2. Alves, C.O., Bertone, A.M., Gonçalves, J.V.: A variational approach to discontinuous problems with critical Sobolev exponents. J. Math. Anal. Appl. 265, 103–127 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Alves, C.O., de Holanda, A.R.F., Santos, J.A.: Existence of positive solutions for a class of semipositone quasilinear problems through Orlicz–Sobolev space. Proc. Am. Math. Soc 147, 285–299 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Alves, C.O., Santos, J.A.: Multivalued elliptic equation with exponential critical growth in \({\mathbb{R} }^2\). J. Differ. Equ. 261, 4758–4788 (2016)

    MATH  Google Scholar 

  5. Alves, C.O., Gonçalves, J.V., Santos, J.A.: Strongly nonlinear multivalued elliptic equations on a bounded domain. J. Global Optim. 58, 565–593 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Ambrosetti, A., Badiale, M.: The dual variational principle and elliptic problems with discontinuous nonlinearities. J. Math. Anal. Appl. 140, 363–373 (1989)

    MathSciNet  MATH  Google Scholar 

  7. Ambrosetti, A., Turner, R.E.L.: Some discontinuous variational problems. Differ. Integral Equ. 1, 341–349 (1988)

    MathSciNet  MATH  Google Scholar 

  8. Arcoya, D., Calahorrano, M.: Some discontinuous problems with a quasilinear operator. J. Math. Anal. Appl. 187, 1059–1072 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Badiale, M., Tarantello, G.: Existence and multiplicity results for elliptic problems with critical growth and discontinuous nonlinearities. Nonlinear Anal. 29, 639–677 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Barrios, B., García-Melián, J., Iturriaga, L.: Semilinear elliptic equations and nonlinearities with zeros. Nonlinear Anal. 134, 117–126 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Barletta, G., Chinnì, A., O’Regan, D.: Existence results for a Neumann problem involving the \(p(x)\)-Laplacian with discontinuous nonlinearities. Nonlinear Anal. Real World Appl. 27, 312–325 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Bonanno, G., Bisci, G.M.: Infinitely many solutions for a boundary value problem with discontinuous nonlinearities. Bound. Value Probl. 2009, 670–675 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Bonanno, G., Giovannelli, N.: An eigenvalue Dirichlet problem involving the \(p\)-Laplacian with discontinuous nonlinearities. J. Math. Anal. Appl. 308, 596–604 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Bonanno, G., Candito, P.: Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities. J. Differ. Equ. 244, 3031–3059 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Braga, J.E.M., Moreira, D.R.: Uniform Lipschitz regularity for classes of minimizers in two phase free boundary problems in Orlicz spaces with small density on the negative phase. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 823–850 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Brezis, H., Nirenberg, L.: \(H^1\) versus \(C^1\) local minimizers. C. R. Acad. Sci. Paris Sér. I Math. 317, 465–472 (1993)

    MathSciNet  MATH  Google Scholar 

  17. Carl, S., Heikkilä, S.: Elliptic equations with discontinuous nonlinearities in \({\mathbb{R} }^N\). Nonlinear Anal. 31, 217–227 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Chang, K.C.: The obstacle problem and partial differential equations with discontinuous nonlinearities. Commun. Pure Appl. Math. 33, 117–146 (1980)

    MathSciNet  MATH  Google Scholar 

  19. Chang, K.C.: Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80, 102–129 (1981)

    MathSciNet  MATH  Google Scholar 

  20. Cianchi, A., Maz’ya, V.G.: Second-order two-sided estimates in nonlinear elliptic problems. Arch. Ration. Mech. Anal. 229, 569–599 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Clarke, F.H.: A new approach to Lagrange multipliers. Math. Oper. Res. 1, 165–174 (1976)

    MathSciNet  MATH  Google Scholar 

  22. Costea, N., Morosanu, G., Varga, C.: Weak solvability for Dirichlet partial differential inclusions in Orlicz–Sobolev spaces. Adv. Differ. Equ. 23, 523–554 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Elenbaas, W., De Boer, J.B., Hehenkamp, Th., Meyer, Chr., Tol, T., Wanmaker, W.L., van de Weijer, M.H.A.: High Pressure Mercury Vapour Lamps and Their Applications. N.V. Philips’ Gloeilampcnfabrieken, Eindhoven (1965)

  24. Fuchs, M., Gongbao, L.: Variational inequalities for energy functionals with nonstandard growth conditions. Abstr. Appl. Anal. 3, 41–64 (1998)

    MathSciNet  MATH  Google Scholar 

  25. Fuchs, M., Osmolovski, V.: Variational integrals on Orlicz-Sobolev spaces. Z. Anal. Anwendungen 17, 393–415 (1998)

    MathSciNet  MATH  Google Scholar 

  26. Fuchs, M., Seregin, G.: Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian fluids, Lecture Notes in Mathematics. Springer, Berlin (2000)

    MATH  Google Scholar 

  27. Fukagai, N., Narukawa, K.: Nonlinear eigenvalue problem for a model equation of an elastic surface. Hiroshima Math. J. 25, 19–41 (1995)

    MathSciNet  MATH  Google Scholar 

  28. Fukagai, N., Narukawa, K.: On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems. Ann. Mat. Pura Appl. 186, 539–564 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Fukagai, N., Ito, M., Narukawa, K.: Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on \({\mathbb{R} }^N\). Funkcial. Ekvac. 49, 235–267 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Gasiński, L., Papageorgiou, N.S.: Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Series in Mathematical Analysis and Applications 8. Chapman & Hall/CRC, Boca Raton, FL (2005)

    MATH  Google Scholar 

  31. Goldshtik, M., Hussain, F.: Inviscid separation in steady planar flows. Fluid Dyn. Res. 23, 235–266 (1998)

    MathSciNet  MATH  Google Scholar 

  32. Hu, S., Kourogenis, N.C., Papageorgiou, N.S.: Nonlinear elliptic eigenvalue problems with discontinuities. J. Math. Anal. Appl. 233, 406–424 (1999)

    MathSciNet  MATH  Google Scholar 

  33. Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12, 1203–1219 (1988)

    MathSciNet  MATH  Google Scholar 

  34. Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural’tseva for elliptic equations. Commun. Partial Differ. Equ. 16, 311–361 (1991)

    MATH  Google Scholar 

  35. Maggi F.: Sets of finite perimeter and geometric variational problems. Cambridge Studies in Advanced Mathematics 135, An introduction to geometric measure theory, Cambridge University Press, Cambridge (2012)

  36. Marano, S.A., Motreanu, D.: On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems. Nonlinear Anal. 48, 37–52 (2002)

    MathSciNet  MATH  Google Scholar 

  37. Motreanu, D., Varga, C.: Some critical point results for locally Lipschitz functionals. Commun. Appl. Nonlinear Anal. 4, 17–33 (1997)

    MathSciNet  MATH  Google Scholar 

  38. Pavlenko, V.N., Potapov, D.K.: The Elenbaas problem on an electric arc. Mat. Zametki 103, 92–100 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Potapov, D.K.: Bifurcation problems for equations of elliptic type with discontinuous nonlinearities. Mat. Zametki 90, 280–284 (2011)

    MathSciNet  Google Scholar 

  40. Potapov, D.K.: Continuous approximations of the Gol’dshtik problem. Mat. Zametki 87, 262–266 (2010)

    MathSciNet  Google Scholar 

  41. Rao, M.M., Ren, Z.D.: Theory of Orlicz spaces. Monographs and Textbooks in Pure and Applied Mathematics 146, Marcel Dekker, Inc., New York (1991)

  42. Santos, C.A., Santos, L.M., Carvalho, L.M.: Equivalent conditions for existence of three solutions for a problem with discontinuous and strongly-singular terms. https://doi.org/10.48550/arxiv.1901.00165

  43. Sherman, C.: A free boundary problem. SIAM Rev. 2, 154–155 (1960)

    Google Scholar 

  44. Tan, Z., Fang, F.: Orlicz-Sobolev versus Hölder local minimizer and multiplicity results for quasilinear elliptic equations. J. Math. Anal. Appl. 402, 348–370 (2013)

    MathSciNet  MATH  Google Scholar 

  45. VyKhoi, L.: Subsolution-supersolution method in variational inequalities. Nonlinear Anal. 45, 775–800 (2001)

    MathSciNet  MATH  Google Scholar 

  46. Yang, J.F.: Positive solutions of quasilinear elliptic obstacle problems with critical exponents. Nonlinear Anal. 25, 1283–1306 (1995)

    MathSciNet  MATH  Google Scholar 

  47. Yuan, Z., Huang, L., Wang, D.: Existence and multiplicity of solutions for a quasilinear elliptic inclusion with a nonsmooth potential. Taiwanese J. Math. 22, 635–660 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, G., Liu, S.: Three symmetric solutions for a class of elliptic equations involving the \(p\)-Laplacian with discontinuous nonlinearities in \({\mathbb{R} }^N\). Nonlinear Anal. 67, 2232–2239 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for careful reading and for many useful comments. The first author would like to thank Ailton Rodrigues da Silva (DMAT/UFRN) for several discussions about this subject.

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. J. Abrantes Santos was partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brasil (CNPq) – 303479/2019-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio H. Monari Soares.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Andre Neves.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, J.A., Pontes, P.F.S. & Soares, S.H.M. A global result for a degenerate quasilinear eigenvalue problem with discontinuous nonlinearities. Calc. Var. 62, 91 (2023). https://doi.org/10.1007/s00526-023-02437-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-023-02437-2

Mathematics Subject Classification

Navigation