Skip to main content
Log in

Computing tensor generalized inverses via specialization and rationalization

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

In this paper, we introduce the notion of outer generalized inverses, with predefined range and null space, of tensors with rational function entries equipped with the Einstein product over an arbitrary field, of characteristic zero, with or without involution. We assume that the involved tensor entries are rational functions of unassigned variables or rational expressions of functional entries. The research investigates the replacements in two stages. The lower-stage replacements assume replacements of unknown variables by constant values from the field. The higher-order stage assumes replacements of functional entries by unknown variables. This approach enables the calculation on tensors over meromorphic functions to be simplified by analogous calculations on matrices whose elements are rational expressions of variables. In general, the derived algorithms permit symbolic computation of various generalized inverses which belong to the class of outer generalized inverses, with prescribed range and null space, over an arbitrary field of characteristic zero. More precisely, we focus on a few algorithms for symbolic computation of outer inverses of matrices whose entries are elements of a field of characteristic zero or a field of meromorphic functions in one complex variable over a connected open subset of \({\mathbb {C}}\). Illustrative numerical results validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Behera, R., Mishra, D.: Further results on generalized inverses of tensors via the Einstein product. Linear Multilinear Algebra 65, 1662–1682 (2017)

    Article  MathSciNet  Google Scholar 

  2. Behera, R., Nandi, A.K., Sahoo, J.K.: Further results on the Drazin inverse of even-order tensors. Numer. Linear Algebra Appl. 27, e2317 (2020). https://doi.org/10.1002/nla.2317

    Article  MathSciNet  MATH  Google Scholar 

  3. Brazell, M., Li, N., Navasca, C., Tamon, C.: Solving multilinear systems via tensor inversion. SIAM J. Matrix Anal. Appl. 34, 542–570 (2013)

    Article  MathSciNet  Google Scholar 

  4. Behera, R., Maji, S., Mohapatra, R.N.: Weighted Moore-Penrose inverses of arbitrary-order tensors. Comput. Appl. Math. 39(4), 1–34 (2020)

    Article  MathSciNet  Google Scholar 

  5. Bu, C., Wei, Y.P., Sun, L., Zhou, J.: Brualdi-type eigenvalue inclusion sets of tensors. Linear Algebra Appl. 480, 168–175 (2015)

    Article  MathSciNet  Google Scholar 

  6. Caravantes, J., Sendra, J.R., Sendra, J.: A Maple package for the symbolic computation of Drazin inverse matrices with multivariate transcendental functions entries. In: Gerhard, J., Kotsireas, I. (eds.) Maple in Mathematics Education and Research. Communications in Computer and Information Science, vol. 1125, pp. 1–15. Springer Nature, Switzerland AG (2020). https://doi.org/10.1007/978-3-030-41258-6_12

    Chapter  Google Scholar 

  7. Chang, K.C., Pearson, K., Zhang, T.: Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. SIAM J. Matrix Anal. Appl. 32(3), 806–819 (2011)

    Article  MathSciNet  Google Scholar 

  8. Che, M., Bu, C., Qi, L., Wei, Y.: Nonnegative tensors revisited: plane stochastic tensors. Linear Multilinear Algebra. (2019). https://doi.org/10.1080/03081087.2018.1453469

    Article  MathSciNet  MATH  Google Scholar 

  9. Che, M., Qi, L., Wei, Y.: Perturbation bounds of tensor eigenvalue and singular value problems with even order. Linear Multilinear Algebra 64, 622–652 (2016)

    Article  MathSciNet  Google Scholar 

  10. Chen, Y., Qi, L., Zhang, X.: The fielder vector of a Laplacian tensor for hypergraph partitioning. SIAM J. Sci. Comput. 39(6), A2508–A2537 (2017)

    Article  Google Scholar 

  11. Cooper, J., Dutle, A.: Spectra of uniform hypergraphs. Linear Algebra Appl. 436, 3268–3292 (2012)

    Article  MathSciNet  Google Scholar 

  12. Du, H., Wang, B., Ma, H.: Perturbation theory for core and core-EP Inverses of tensor via Einstein product. Filomat 33, 5207–5217 (2019)

    Article  MathSciNet  Google Scholar 

  13. Huang, S., Zhao, G., Chen, M.: Tensor extreme learning design via generalized Moore-Penrose inverse and triangular type-2 fuzzy sets. Neural Comput. Appl. 31, 5641–5651 (2019)

    Article  Google Scholar 

  14. Ji, J., Wei, Y.: Weighted Moore-Penrose inverses and the fundamental theorem of even-order tensors with Einstein product. Front. Math. China 12, 1317–1337 (2017)

    Article  MathSciNet  Google Scholar 

  15. Ji, J., Wei, Y.: The Drazin inverse of an even-order tensor and its application to singular tensor equations. Comput. Math. Appl. 75(9), 3402–3413 (2018)

    Article  MathSciNet  Google Scholar 

  16. Ji, J., Wei, Y.: The outer generalized inverse of an even-order tensor with the Einstein product through the matrix unfolding and tensor folding. Electronic J. Linear Algebra 36, 599–615 (2020)

    Article  MathSciNet  Google Scholar 

  17. Jin, H., Bai, M., Benítez, J., Liu, X.: The generalized inverses of tensors and an application to linear models. Comput. Math. Appl. 74, 385–397 (2017)

    Article  MathSciNet  Google Scholar 

  18. Kroonenberg, P.M.: Applied Multiway Data Analysis. Wiley-Interscience, New York (2008)

    Book  Google Scholar 

  19. Mosić, D., Stanimirović, S., Sahoo, J.K., Behera, R., Katsikis, V.N.: One-sided weighted outer inverses of tensors. J. Comput. Appl. Math. 388, 113293 (2021). https://doi.org/10.1016/j.cam.2020.113293

    Article  MathSciNet  MATH  Google Scholar 

  20. Liang, M., Zheng, B.: Further results on Moore-Penrose inverses of tensors with application to tensor nearness problems. Comput. Math. Appl. 77, 1282–1293 (2019)

    Article  MathSciNet  Google Scholar 

  21. Liang, M., Zheng, B., Zhao, R.: Tensor inversion and its application to the tensor equations with Einstein product. Linear Multilinear Algebra 67, 843–870 (2019)

    Article  MathSciNet  Google Scholar 

  22. Min, S., Jing, L.: Noise-tolerant continuous-time Zhang neural networks for time-varying Sylvester tensor equations. Adv. Differ. Equat. 2019, 465 (2019)

    Article  MathSciNet  Google Scholar 

  23. Panigrahy, K., Mishra, D.: On reverse-order law of tensors and its application to additive results on Moore-Penrose inverse. Comput. Math. Appl. 77, 1282–1293 (2019)

    Article  MathSciNet  Google Scholar 

  24. Qi, L., Chen, H., Chen, Y.: Tensor eigenvalues and their applications, Advances in Mechanics and Mathematics 39. Springer, Singapore (2018)

    Google Scholar 

  25. Qi, L., Luo, L.: Tensor Analysis: Spectral Theory and Special Tensors. SIAM, Philadelphia (2017)

    Book  Google Scholar 

  26. Sahoo, J.K., Behera, R., Stanimirović, P.S., Katsikis, V., Ma, H.: Core and core-EP inverses of tensors. Comput. Appl. Math. 39 (2020). Article 9

  27. Sahoo, J.K., Behera, R., Stanimirović, P.S., Katsikis, V.N.: Computation of outer inverses of tensors using the QR decomposition. Comput. Appl. Math. (2020). https://doi.org/10.1007/s40314-020-01225-4

    Article  MathSciNet  MATH  Google Scholar 

  28. Sendra, J.R., Sendra, J.: Symbolic computation of Drazin inverses by specializations. J. Comput. Appl. Math. 301, 201–212 (2016)

    Article  MathSciNet  Google Scholar 

  29. Sendra, J.R., Sendra, J.: Computation of Moore-Penrose generalized inverses of matrices with meromorphic function entries. Appl. Math. Comput. 313, 355–366 (2017)

    Article  MathSciNet  Google Scholar 

  30. Sendra, J.R., Sendra, J.: Gröbner basis computation of Drazin inverses with multivariate rational function entries. J. Comput. Appl. Math. 259, 450–459 (2015)

    Article  Google Scholar 

  31. Sidiropoulos, N.D., Lathauwer, L.D., Fu, X., Huang, K., Papalexakis, E.E., Faloutsos, C.: Tensor decomposition for signal processing and machine learning. IEEE Trans. Signal Process. 65(13), 3551–3582 (2017)

    Article  MathSciNet  Google Scholar 

  32. Stanimirović, P.S., Ćirić, M., Katsikis, V.N., Li, C., Ma, H.: Outer and \((b, c)\) inverses of tensors. Linear Multilinear Algebra 68, 940–971 (2020)

    Article  MathSciNet  Google Scholar 

  33. Stanimirović, P.S., Ćirić, M., Lastra, A., Sendra, J.R., Sendra. J.: Representations and geometrical properties of generalized inverses over fields. Linear and Multilinear Algebra (in press)

  34. Stanimirović, P.S., Ćirić, M., Lastra, A., Sendra, J.R., Sendra, J.: Representations and symbolic computation of generalized inverses over fields. Appl. Math. Comput. (2021). https://doi.org/10.1016/j.amc.2021.126287

    Article  MathSciNet  Google Scholar 

  35. Stanimirović, P.S., Ćirić, M., Stojanović, I., Gerontitis, D.: Conditions for existence, representations and computation of matrix generalized inverses. Complexity (2017). https://doi.org/10.1155/2017/6429725

    Article  MathSciNet  MATH  Google Scholar 

  36. Stanimirović, P.S., Katsikis, V.N., Pappas, D.: Computing \(\{2,4\}\) and \(\{2,3\}\)-inverses by using the Sherman-Morrison formula. Appl. Math. Comput. 273, 584–603 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Sun, L., Zheng, B., Bu, C., Wei, Y.: Moore-Penrose inverse of tensors via Einstein product. Linear Multilinear Algebra 64, 686–698 (2016)

    Article  MathSciNet  Google Scholar 

  38. Sun, L., Zheng, B., Wei, Y., Bu, C.: Generalized inverses of tensors via a general product of tensors. Front. Math. China 13, 893–911 (2018)

    Article  MathSciNet  Google Scholar 

  39. Urquhart, N.S.: Computation of generalized inverse matrtices which satisfy specified conditions. SIAM Review 10, 216–218 (1968)

    Article  MathSciNet  Google Scholar 

  40. Wang, B., Du, H., Ma, H.: Perturbation bounds for DMP and CMP inverses of tensors via Einstein product. Comput. Appl. Math. 39 (2020). Article 28

  41. Wang, Q.-W., Xu, X.: Iterative algorithms for solving some tensor equations. Linear Multilinear Algebra 67, 1325–1349 (2019)

    Article  MathSciNet  Google Scholar 

  42. Wyman, B.F., Sain, M.K., Conte, G., Perdon, A.M.: Poles and zeros of matrices of rational functions. Linear Algebra Appl. 157, 113–139 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Predrag Stanimirović and Dijana Mosić are supported from the Ministry of Education and Science of Republic of Serbia, Grants No. 174013/451-03-68/2020-14/200124 and 174007/451-03-68/2020-14/200124. Ratikanta Behera is supported from the Mohapatra Family Foundation and the College of Graduate Studies, University of Central Florida, Orlando, FL, USA. J.R. Sendra and J. Sendra are are partially supported by the Spanish Ministerio de Economía y Competitividad, and by the European Regional Development Fund (ERDF), under the Project MTM2017-88796-P. A. Lastra and J.R. Sendra are members of the Research Group ASYNACS (Ref.CT-CE2019/683). Alberto Lastra is partially supported by the project PID2019-105621GB-I00 of Ministerio de Ciencia e Innovación. A. Lastra and J. R. Sendra also partially supported by Comunidad de Madrid and Universidad de Alcalá under grant CM/JIN/2019-010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Predrag S. Stanimirović.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanimirović, P.S., Sendra, J.R., Behera, R. et al. Computing tensor generalized inverses via specialization and rationalization. RACSAM 115, 116 (2021). https://doi.org/10.1007/s13398-021-01057-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-021-01057-9

Keywords

Mathematics Subject Classification

Navigation