Skip to main content
Log in

Generalized inverses of tensors via a general product of tensors

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

We define the {i}-inverse (i = 1, 2, 5) and group inverse of tensors based on a general product of tensors. We explore properties of the generalized inverses of tensors on solving tensor equations and computing formulas of block tensors. We use the {1}-inverse of tensors to give the solutions of a multilinear system represented by tensors. The representations for the {1}-inverse and group inverse of some block tensors are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Behera R, Mishra D. Further results on generalized inverses of tensors via Einstein product. Linear Multilinear Algebra, 2017, 65(8): 1662–1682

    Article  MathSciNet  MATH  Google Scholar 

  2. Beltrán C, Shub M. On the geometry and topology of the solution variety for polynomial system solving. Found Comput Math, 2017, 12(6): 719–763

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Isral A, Greville T N E. Generalized Inverse: Theory and Applications. New York: Wiley-Interscience, 1974

    Google Scholar 

  4. Brazell M, Li N, Navasca C, Tamon C. Solving multilinear systems via tensor inversion. SIAM J Matrix Anal Appl, 2013, 34(2): 542–570

    Article  MathSciNet  MATH  Google Scholar 

  5. Bu C, Wang W, Sun L, Zhou J. Minimum (maximum) rank of sign pattern tensors and sign nonsingular tensors. Linear Algebra Appl, 2015, 483: 101–114

    Article  MathSciNet  MATH  Google Scholar 

  6. Bu C, Wei Y P, Sun L, Zhou J. Brualdi-type eigenvalue inclusion sets of tensors. Linear Algebra Appl, 2015, 480: 168–175

    Article  MathSciNet  MATH  Google Scholar 

  7. Bu C, Zhang X, Zhou J, Wang W, Wei Y. The inverse, rank and product of tensors. Linear Algebra Appl, 2014, 446: 269–280

    Article  MathSciNet  MATH  Google Scholar 

  8. Campbell S L. The Drazin inverse and systems of second order linear differential equations. Linear Multilinear Algebra, 1983, 14: 195–198

    Article  MATH  Google Scholar 

  9. Campbell S L, Meyer C D. Generalized Inverses of Linear Transformations. London: Pitman, 1979

    MATH  Google Scholar 

  10. Chang K C, Pearson K, Zhang T. Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. SIAM J Matrix Anal Appl, 2011, 32(3): 806–819

    Article  MathSciNet  MATH  Google Scholar 

  11. Che M, Bu C, Qi L, Wei Y. Nonnegative tensors revisited: plane stochastic tensors. Linear Multilinear Algebra, https://doi.org/10.1080/03081087.2018.1453469

  12. Chen J, Saad Y. On the tensor SVD and the optimal low rank orthogonal approximation of tensors. SIAM J Matrix Anal Appl, 2009, 30(4): 1709–1734

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen Y, Qi L, Zhang X. The fielder vector of a Laplacian tensor for hypergraph partitioning. SIAM J Sci Comput, 2017, 39(6): A2508–A2537

    Article  MATH  Google Scholar 

  14. Cooper J, Dutle A. Spectra of uniform hypergraphs. Linear Algebra Appl, 2012, 436: 3268–3292

    Article  MathSciNet  MATH  Google Scholar 

  15. Ding W, Wei Y. Solving multi-linear systems with M-tensors. J Sci Comput, 2016, 68: 689–715

    Article  MathSciNet  MATH  Google Scholar 

  16. Fan Z, Deng C, Li H, Bu C. Tensor representations of quivers and hypermatrices. Preprint

  17. Hartwig R E, Shoaf J M. Group inverse and Drazin inverse of bidiagonal and triangular Toeplitz matrices. Aust J Math, 1977, 24(A): 10–34

    Article  MathSciNet  MATH  Google Scholar 

  18. Hu S, Huang Z, Ling C, Qi L. On determinants and eigenvalue theory of tensors. J Symbolic Comput, 2013, 50: 508–531

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang S, Zhao G, Chen M. Tensor extreme learning design via generalized Moore-Penrose inverse and triangular type-2 fuzzy sets. Neural Comput Appl, https://doi.org/10.1007/s00521-018-3385-5

  20. Hunter J J. Generalized inverses of Markovian kernels in terms of properties of the Markov chain. Linear Algebra Appl, 2014, 447: 38–55

    Article  MathSciNet  MATH  Google Scholar 

  21. Ji J, Wei Y. Weighted Moore-Penrose inverses and fundamental theorem of even-order tensors with Einstein product. Front Math China, 2017, 12(6): 1319–1337

    Article  MathSciNet  MATH  Google Scholar 

  22. Ji J, Wei Y. The Drazin inverse of an even-order tensor and its application to singular tensor equations. Comput Math Appl, 2018, 75: 3402–3413

    Article  MathSciNet  Google Scholar 

  23. Kirkland S J, Neumann M, Shader B L. On a bound on algebraic connectivity: the case of equality. Czechoslovak Math J, 1998, 48: 65–76

    Article  MathSciNet  MATH  Google Scholar 

  24. Kroonenberg P M. Applied Multiway Data Analysis. New York: Wiley-Interscience, 2008

    Book  MATH  Google Scholar 

  25. Liu W, Li W. On the inverse of a tensor. Linear Algebra Appl, 2016, 495: 199–205

    Article  MathSciNet  MATH  Google Scholar 

  26. Lu H, Plataniotis K N, Venetsanopoulos A. Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data. New York: CRC Press, 2013

    Book  Google Scholar 

  27. Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324

    Article  MathSciNet  MATH  Google Scholar 

  28. Qi L, Luo Z. Tensor Analysis: Spectral Theory and Special Tensors. Philadelphia: SIAM, 2017

    Book  MATH  Google Scholar 

  29. Shao J. A general product of tensors with applications. Linear Algebra Appl, 2013, 439: 2350–2366

    Article  MathSciNet  MATH  Google Scholar 

  30. Shao J, You L. On some properties of three different types of triangular blocked tensors. Linear Algebra Appl, 2016, 511: 110–140

    Article  MathSciNet  MATH  Google Scholar 

  31. Sidiropoulos N D, Lathauwer L D, Fu X, Huang K, Papalexakis E E, Faloutsos C. Tensor decomposition for signal processing and machine learning. IEEE Trans Signal Process, 2017, 65(13): 3551–3582

    Article  MathSciNet  Google Scholar 

  32. Sun L, Wang W, Zhou J, Bu C. Some results on resistance distances and resistance matrices. Linear Multilinear Algebra, 2015, 63(3): 523–533

    Article  MathSciNet  MATH  Google Scholar 

  33. Sun L, Zheng B, Bu C, Wei Y. Moore-Penrose inverse of tensors via Einstein product. Linear Multilinear Algebra, 2016, 64(4): 686–698

    Article  MathSciNet  MATH  Google Scholar 

  34. Wei Y. Generalized inverses of matrices. In: Hogben L, ed. Handbook of Linear Algebra. 2nd ed. Boca Raton: Chapman and Hall/CRC, 2014, Chapter 27

Download references

Acknowledgements

The authors are very grateful to the referees for their valuable suggestions, which have considerably improved the paper. Yimin Wei was supported by the International Cooperation Project of Shanghai Municipal Science and Technology Commission (Grant No. 16510711200) and the National Natural Science Foundation of China (Grant No. 11771099); Changjiang Bu was supported by the National Natural Science Foundation of China (Grant No. 11371109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjiang Bu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Zheng, B., Wei, Y. et al. Generalized inverses of tensors via a general product of tensors. Front. Math. China 13, 893–911 (2018). https://doi.org/10.1007/s11464-018-0695-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-018-0695-y

Keywords

MSC

Navigation