Skip to main content
Log in

Fuglede–Putnam type theorems via the generalized Aluthge transform

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas Aims and scope Submit manuscript

Abstract

Let \(T=U|T|\) and \(S=V|S|\) be the polar decompositions of \(T\in {\fancyscript{L}}({\fancyscript{H}})\) and \(S\in {\fancyscript{L}}({\fancyscript{K}})\) and let \(Com (T,S)\) stand for the set of operators \(X\in \fancyscript{L}(\fancyscript{K},\fancyscript{H})\) such that \(TX=XS.\) A pair \((T,S)\) is said to have the Fuglede–Putnam property if \(Com(T,S)\subseteq Com(T^*,S^*).\) Let \(\widetilde{Z}(s,t)\) denote the generalized Aluthge transform of a bounded operator \(Z\). We show that (i) if \(T\) is invertible class \(A(s,t)\) operator with \(s+t=1\) and \(S^*\) is a class \({\mathcal {Y}}\), then \(Com(T,S)\subseteq Com(T^*,S^*);\) (ii) if the pair \((T,S)\) have the Fuglede–Putnam property, then the range of \(\delta _{T,S}\) is orthogonal to the kernel of \(\delta _{T,S}\); (iii) if the pair \((T,S)\) have the Fuglede–Putnam property, then \(Com(T,S)\subseteq Com(\widetilde{T}(s,t),\widetilde{S}(s,t))\), furthermore, if \(T\) is invertible, then \(Com(T,S)= Com(\widetilde{T}(s,t),\widetilde{S}(s,t))\). Finally, if \(Re(U|T|^s)\ge a>0\) and \(Re(V|S|^s)\ge a>0\) and \(X\) is an operator such that \(U^*X=XV,\) then we prove that \(\left\| (\widetilde{T}(s,s))^*X-X\widetilde{S}(s,s)\right\| _p\ge 2a\left\| |T|^sX-X|S|^s\right\| _p\) for any \(1\le p\le \infty \) such that \(0<s<1.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aluthge, A.: On p-hyponormat operators for \(0 \le p \le 1\). Integral Equ. Oper. Theory 13, 307–315 (1990)

  2. Aluthge, A., Wang, D.: \(w\)-hyponormal operators. Integral Equ. Oper. Theory 36, 1–10 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ando, T.: Operators with norm condition. Acta. Sci. Math. 33(4), 359–365 (1972)

    Google Scholar 

  4. Anderson, J.H., Foias, C.: properties which normal operators share with normal derivations and related operators. Pac. J. Math. 61, 313–325 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bachir, A., Lombaria, F.: Fuglede-Putnnam theorem for \(w\)-hyponormal operators. Math. Ineq. Appl. 12, 777–786 (2012)

    Google Scholar 

  6. Berberian, S.K.: Extensions of a theorem of Fuglede and Putnam. Proc. Am. Math. Soc. 71, 113–114 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  7. Duggal, B.P.: On generalised Putnam-Fuglede theorems. Mh. Math. 107, 309–332 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Douglas, R.G.: On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Am. Math. Soc. 17, 413–415 (1966)

    Article  MATH  Google Scholar 

  9. Duggal, B.P.: A remark on generalised Putnam-Fuglede theorems. Proc. Am. Math. Soc. 129, 83–87 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fujii, M., Jung, D., Lee, S.-H., Lee, M.-Y., Nakamoto, R.: Some classses of operators related to paranormal and log-hyponormal operators. Math. Jpn. 51(3), 395–402 (2000)

    MATH  MathSciNet  Google Scholar 

  11. Furuta, T.: On the class of Paranormal operators. Proc. Jpn. Acad. 43, 594–598 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  12. Furuta, T., Ito, M., Yamazaki, T.: A subclass of paranormal operators including class of \(log\)-hyponormal and several related classes. Sci. math. 1, 389–403 (1998)

    MATH  MathSciNet  Google Scholar 

  13. Furuta, T.: Invitation to Linear Operator. Taylor and Francis, London (2001)

    Book  Google Scholar 

  14. Ito, M.: Some classes of operators associated with generalized Aluthge transformation. Sut J. Math. 35(1), 149–165 (1999)

    MATH  MathSciNet  Google Scholar 

  15. Kim, I.H.: The Fuglede-Putnam theorem for \((p, k)\)-quasihyponormal operators. J. Ineq. Appl. 1–7 (2006). Article ID 47481

  16. Kittaneh, F.: Inequalities for the Schatten p-norm II. Glasg. Math. J. 29, 99–104 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kittaneh, F.: Normal derivation in normal ideal. Proc. Am. Math. Soc. 123, 1779–1785 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Mecheri, S., Tanahashi, K., Uchiyama, A.: Fuglede-Putnam theorem for \(p\)-hyponormal or class \(\cal Y\) operators. Bull. Korean. Math. Soc. 43, 747–753 (2006)

  19. Moslehian, M.S., Nabavi, S.M.S.: Sales, Fuglede-Putnam type theorems via the Aluthge transform. Positivity (2012). doi:10.1007/s11117-011-0154-4

    Google Scholar 

  20. Patel, S.M., Tanahashi, K., Uchiyama, A., Yanagida, M.: Quasinormality and Fuglede-Putnam theorem for class \(A(s, t)\) operators. Nihonkai Math. J. 17, 49–67 (2006)

    MATH  MathSciNet  Google Scholar 

  21. Radjabalipour, M.: An extension of Putnam-Fuglede theorem for hyponormal operators. Math. Z. 194, 117–120 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  22. Rashid, M.H.M., Zguitti, H.: Weyl type theorems and class \(A(s, t)\) operators. Math. Ineq. Appl. 14(3), 581–594 (2011)

    MATH  MathSciNet  Google Scholar 

  23. Rashid, M.H.M.: An extension of Fuglede-Putnam theorem for \(w\)-hyponormal operators. Afr. Diaspora J. Math. (N.S.) 14(1), 106–118 (2012)

    Google Scholar 

  24. Rashid, M.H.M.: Class \(wA(s, t)\) operators and quasisimilarity. Port. Math. 69(4), 305–320 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Takahashi, K.: On the converse of Putnam-Fuglede theorem. Acta Sci. Math. (Szeged) 43, 123–125 (1981)

    MATH  MathSciNet  Google Scholar 

  26. Uchiyama, A., Yochino, T.: On the class \(\cal Y\) operators. Nihonkai. Math. J. 8, 174–179 (1997)

    Google Scholar 

  27. Uchiyama, A., Tanahashi, K.: Fuglede-Putnam theorem for \(p\)-hyponormal or \(\log \)-hyponormal operators. Glassg. Math. J. 44, 397–410 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ito, M., Yamazaki, T.: Relations betweens two equalities \((B^{\frac{r}{2}}A^pB^{\frac{r}{2}})^{\frac{r}{r+p}}\ge B^r\) and \( A^p\ge (A^{\frac{p}{2}}B^rA^{\frac{p}{2}})^{\frac{p}{r+p}}\) and their applications. Integral Equ. Oper. Theory 44, 442–450 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would like to sincerely thank Referee for very useful comments improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. M. Rashid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rashid, M.H.M. Fuglede–Putnam type theorems via the generalized Aluthge transform. RACSAM 108, 1021–1034 (2014). https://doi.org/10.1007/s13398-013-0158-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-013-0158-y

Keywords

Mathematics Subject Classification (2000)

Navigation