Skip to main content
Log in

On commutator of generalized Aluthge transformations and Fuglede–Putnam theorem

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

Let \(A=U|A|\) be the polar decomposition of A on a complex Hilbert space \({\mathscr {H}}\) and \(0<s,t\). Then \({\widetilde{A}}_{s, t}=|A|^sU|A|^t\) and \({\widetilde{A}}_{s, t}^{(*)}=|A^*|^sU|A^*|^t\) are called the generalized Aluthge transformation and generalized \(*\)-Aluthge transformation of A, respectively. A pair (AB) of operators is said to have the Fuglede–Putnam property (breifly, the FP-property) if \(AX=XB\) implies \(A^*X=XB^*\) for every operator X. We prove that if (AB) has the FP-property, then \(({\widetilde{A}}_{s, t},{\widetilde{B}}_{s, t})\) and \((({\widetilde{A}}_{s, t})^{*},({\widetilde{B}}_{s, t})^{*})\) has the FP-property for every \(s,t>0\) with \(s+t=1\). Also, we prove that \(({\widetilde{A}}_{s, t},{\widetilde{B}}_{s, t})\) has the FP-property if and only if \((({\widetilde{A}}_{s, t})^{*},({\widetilde{B}}_{s, t})^{*})\) has the FP-property, where AB are invertible and \( 0 < s, t \) with \( s + t =1\). Moreover, we prove that if \(0 < s, t\) and \({\widetilde{A}}_{s, t}\) is positive and invertible, then \(\left\| {\widetilde{A}}_{s, t}X-X{\widetilde{A}}_{s, t}\right\| \le \left\| A\right\| ^{2t}\left\| ({\widetilde{A}}_{s, t})^{-1}\right\| \left\| X\right\| \) for every operator X. Also, if \( 0 <s, t\) and X is positive, then \(\left\| |{\widetilde{A}}_{s, t}|^{2r} X-X|{\widetilde{A}}_{s, t}|^{2r}\right\| \le \frac{1}{2}\left\| |A|\right\| ^{2r}\left\| X\right\| \) for every \(r>0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aluthge, A.: On \(p\)-hyponormat operators for \(0 < p < 1\). Integral Equ. Oper. Theory 13, 307–315 (1990)

    Article  MathSciNet  Google Scholar 

  2. Aluthge, A., Wang, D.: \(w\)-hyponormal operators. Integral Equ. Oper. Theory 36, 1–10 (2000)

    Article  MathSciNet  Google Scholar 

  3. Ando, T.: Operators with norm condition. Acta. Sci. Math. (Szeged) 33(4), 359–365 (1972)

    MathSciNet  MATH  Google Scholar 

  4. Bachir, A.: Fuglede Putnam theorem for \(w\)-hyponormal or class \({{\cal{Y}}}\) operators. Ann. Funct. Anal. 4(1), 53–60 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bachir, A., Lombarkia, F.: Fuglede Putnam’s theorem for \(w\)-hyponormal operators. Math. Inequal. Appl. 15(4), 777–786 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Böttcher, A., Wenzel, D.: How big can the commutator of two matrices be and how big is it typically? Linear Algebra Appl. 403, 216–228 (2005)

    Article  MathSciNet  Google Scholar 

  7. Furuta, T.: \(A\ge B\ge 0\) ensure \((B^rA^pB^r)^{1/q}\ge B^{(p+2r)/q}\) for \(r\ge 0, p\ge 0, q\ge 1\) with \((1+2r)q\ge p+2r\). Proc. Am. Math. Soc. 101, 85–88 (1987)

    MATH  Google Scholar 

  8. Gohberg, I.C., Krein, M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators. Amer. Math. Soc, Providence (1969)

    MATH  Google Scholar 

  9. Hansen, F.: An inequality. Math. Ann. 246, 249–250 (1980)

    Article  Google Scholar 

  10. Ito, M., Yamazaki, T.: Relations between two inequalities \((B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{r}{p+r}}\ge B^{r}\) and \(A^{p}\ge (A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}})^{\frac{r}{p+r}}\) and their applications. Integral Equ. Oper. Theory 44, 442–450 (2002)

    Article  Google Scholar 

  11. Ito, M., Yamazaki, T.: Relations betweens two equalities \({({B^\frac{r}{2}}A^{p}{B^\frac{r}{2}})}^\frac{r}{r+p}\ge B^{r}\) and \(A^{p}\ge (A^{\frac{p}{2}}B^{r}A^{\frac{p}{2}})^{\frac{p}{p+r}}\) and their applications. Integral Equ. Oper. Theory 44, 442–450 (2002)

    Article  Google Scholar 

  12. Kittaneh, F.: Inequalities for the Schatten \(p\)-Norm. IV. Commun. Math. Phys. 106, 581–585 (1986)

    Article  MathSciNet  Google Scholar 

  13. Kittaneh, F.: Inequalities for commutators of positive operators. J. Funct. Anal. 250, 132–143 (2007)

    Article  MathSciNet  Google Scholar 

  14. Kittaneh, F.: Norm inequalities for commutators of self-adjoint operators. Integral Equ. Oper. Theory 62, 129–135 (2008)

    Article  MathSciNet  Google Scholar 

  15. Moslehian, M.S., Nabavi Sales, M.S.: Fuglede–Putnam type theorems via the Aluthge transform. Positivity 17(1), 151–162 (2013)

    Article  MathSciNet  Google Scholar 

  16. Rashid, M.H.M.: Class \(wA(s, t)\) operators and quasisimilarity. Port. Math. 69(4), 305–320 (2012). https://doi.org/10.4171/PM/1919

    Article  MathSciNet  MATH  Google Scholar 

  17. Rashid, M.H.M.: An extension of Fuglede–Putnam theorem for \(w\)-hyponormal operators. Afr. Diaspora J. Math. 14(1), 106–118 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Rashid, M.H.M.: Fuglede–Putnam type theorems via the generalized Aluthge transform. Rev. R. Acad. Cienc. Exactas Fis. Nat. Serie A. Matematicas 108(2), 1021–1034 (2014)

    Article  MathSciNet  Google Scholar 

  19. Rashid, M.H.M.: Quasinormality and Fuglede–Putnam theorem for \((s, p)\)-\(w\)-hyponormal operators. Linear Multlinear Algebra 65(8), 1600–1616 (2017)

    Article  MathSciNet  Google Scholar 

  20. Takahashi, K.: On the converse of Putnam–Fuglede theorem. Acta Sci. Math. (Szeged) 43, 123–125 (1981)

    MathSciNet  MATH  Google Scholar 

  21. Tanahashi, K.: On \(\log \)-hyponormal operators. Integral Equ. Oper. Theory 34, 364–372 (1999)

    Article  MathSciNet  Google Scholar 

  22. van Hemmen, J.L., Ando, T.: An inequality for trace ideals. Commun. Math. Phys. 76, 143–148 (1980)

    Article  MathSciNet  Google Scholar 

  23. Yanagida, M.: Powers of class \(wA(s, t)\) operators with generalized Aluthge transformation. J. Inequal. Appl. 7, 143–168 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Zhan, X.: Singular values of differences of positive semidefinite matrices. SIAM J. Matrix Anal. Appl. 22, 819–823 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. M. Rashid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, M.H.M., Tanahashi, K. On commutator of generalized Aluthge transformations and Fuglede–Putnam theorem. Positivity 22, 1281–1295 (2018). https://doi.org/10.1007/s11117-018-0574-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11117-018-0574-5

Keywords

Mathematics Subject Classification

Navigation