Skip to main content
Log in

On Lorentz and Orlicz–Lorentz subspaces of bounded families and approximation type operators

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas Aims and scope Submit manuscript

Abstract

For an arbitrary Banach space X and an arbitrary index set I,we denote by \(l_{\infty ,I}(X)\), the Banach space of all bounded families \(\{x_i\}_{i \in I}\) in X, equipped with the sup norm; and by \(l_{p,q,M,I}(X)\) and \(l_{p,q,r,I}(X)\), subspaces of \(l_{\infty ,I}(X)\), where p,q,r are positive reals and M is an Orlicz function. In case, X is a real Banach space which is also a \(\sigma \)-Dedekind complete Banach lattice, it is shown that \(l_{p,q,M,I}(X)\) is \(\sigma \)-Dedekind complete Banach lattice containing a subspace order isometric to \(l_\infty \) when \(1/p-1/q <-1\). In this paper, we study their structural properties and characterize their elements. For \(~X=\mathbb K \), the symbols \(~l_{p,q,M}(I)\) and \(~l_{p,q,r}(I)\) are being used for the subspaces \(l_{p,q,M,I}(X)\) and \(l_{p,q,r,I}(X)\) respectively. Besides investigating relationships amongst the spaces \(l_{p,q,r}(I)\) for different positive indices p,q and r, we consider their product. Using generalized approximation numbers of bounded linear operators and these spaces, we consider operators of generalized approximation type \(l_{p,q,r}\) and represent them as an infinite series of finite rank operators. We also establish the quasi-Banach ideal structure of the class of all such operators. Finally we prove results preserving various set theoretic inclusion relations amongst these operator ideals. These results generalize some of the earlier results proved for Lorentz spaces by A. Pietsch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acharya, L.R.: Linear operators and approximation quantities. Dissertation, I.I.T. Kanpur, India (2008)

  2. Aliprantis, C.D., Burkinshaw, O.: Locally solid Riesz spaces. In: Pure and Applied Mathematics, vol. 76. Academic Press, New York (1978)

  3. Altshuler, L.: Uniform convexity in Lorentz sequence spaces. Israel J. Math. 20(3–4), 260–274 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carl, B., Stephani, I.: Entropy, Compactness and the Approximation of Operators. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  5. Foralewski, P.: On some geometric properties of generalized Orlicz–Lorentz sequence spaces. Indagationes Mathematicae N. S. 24(2), 346–372 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Foralewski, P., Hudzik, H., Szymaszkiewicz, L.: On some geometric and topological properties of generalized Orlicz–Lorentz sequence spaces. Math. Nachr. 281(2), 181–198 (2008)

    Google Scholar 

  7. Gregory, D.A.: Vector-valued sequence spaces. Dissertation, University Ann. Arbor, Michigan (1967)

  8. Gupta, M., Bhar, A.; Generalized Orlicz–Lorentz sequence spaces and corresponding operator ideals. Mathematica Slovaca 64(6), (to appear, 2014)

  9. Hardy, G.H., Littlewood, J.E.: Some new properties of Fourier constants. J. London Math. Soc. 6, 3–9 (1931)

    Article  MathSciNet  Google Scholar 

  10. Hilbert, D.: Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen (Vierte Mitteilung), Nachr. Wiss. Gesell. Göttingen, Math. -Phys. Kl., (1906), 157–227

  11. Hudzik, H.: Banach lattices with order isometric copies of \(l_\infty \). Indag. Math. N. S. 9(4), 521–527 (1998)

  12. Kami\(\acute{n}\)ska, A., Maligranda, L.: Order convexity and concavity of Lorentz spaces \(\Lambda _{p, w}\), \(0<p<\infty \). Studia Math. 160(3), 267–286 (2004)

  13. Kami\(\acute{n}\)ska, A., Parrish, A. M.: Convexity and concavity constants in Lorentz and Marcinkiewicz spaces. J. Math. Anal. Appl. 343, 337–351 (2008)

  14. Kamthan, P.K., Gupta, M.: Sequence spaces and series. In: Lecture Notes in Pure and Applied Mathematics, vol. 65. Marcel Dekker, New York (1981)

  15. Köthe, G.: Topological Vector Spaces, vol. I. Springer, Berlin (1969)

    MATH  Google Scholar 

  16. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I. Sequence Spaces. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  17. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Function Spaces. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  18. Lorentz, G.G.: On the theory of spaces \(\Lambda \). Pac. J. Math. 1(3), 411–429 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  19. Musielak, J.: Orlicz Spaces and Modular Spaces. In: Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)

  20. Patterson, J.: Generalized sequence spaces and matrix transformations. Dissertation, I.I.T. Kanpur, India (1980)

  21. Pietsch, A.: Operator Ideals. VEB Deutscher Verlag der Wissenschaften, Berlin (1978)

    Google Scholar 

  22. Pietsch, A.: Factorization theorems for some scales of operator ideals. Math. Nachr. 97, 15–19 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pietsch, A.: Approximation spaces. J. Approx. Theory 32, 115–134 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pietsch, A.: Eigenvalues and s-Numbers. Cambridge University Press, New York (1986)

    Google Scholar 

  25. Ramanujan, M.S.: Generalized nuclear maps in normed linear spaces. J. Reine Angew. Math. 244, 190–197 (1970)

    MATH  MathSciNet  Google Scholar 

  26. Ramanujan, M.S.: Absolutely \(\lambda \)-summing operators,\(\lambda \) a symmetric sequence space. Math. Z. 144, 187–193 (1970)

    Article  MathSciNet  Google Scholar 

  27. Riesz, F.: Les systèmes d’èquations linéaires à une infinité d’inconnues, Paris (1913)

  28. Schmidt, E.: Über die Auflösung linearer Gleichungen mit unendlich vielen Unbekannten. Rend. Circ. Mat. Palermo (1908)

  29. Yilmaz, Y., KermalÖzdemir, M., Solak, I., Candan, M.: Operator on some vector-valued Orlicz sequence spaces. F. Ü. Fen ve Mühendislik Bilimleri Dergisi 17(1), 59–71 (2005)

    Google Scholar 

Download references

Acknowledgments

The authors express their gratitude and thank the anonymous referee for pointing out the results on order structure which helped us to include Propositions 3.5 and 3.6; and also the addition of examples on countable/uncountable support of families in the beginning of the Sect. 3. The authors are also thankful to the referee for providing the alternative proof (ALITER) of Proposition 3.1 and the proof for the norm character of \(\Vert .\Vert _{p,q,M,I}\) for \(q \le p\) in Theorem 3.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjul Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, M., Bhar, A. On Lorentz and Orlicz–Lorentz subspaces of bounded families and approximation type operators. RACSAM 108, 733–755 (2014). https://doi.org/10.1007/s13398-013-0137-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-013-0137-3

Keywords

Mathematics Subject Classification (2000)

Navigation