Skip to main content
Log in

A Novel Sensor for the Detection of n-Butanol Based on CoMn2O4 Nanoparticles

  • Original Article – Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this paper, we studied the alcohol-sensing properties of CoMn2O4 nanoparticles for the first time. The CoMn2O4 nanoparticles were prepared via a simple microwave-assisted colloidal method using cobalt nitrate, manganese nitrate, dioctyl sulfosuccinate sodium salt, and ethylene glycol as a solvent. Various techniques were used to characterize the structural, morphological, and optical properties of CoMn2O4. The crystal structure of CoMn2O4 was found after calcination at a temperature of 400 °C. The Raman spectrum showed seven vibrational bands, while the optical absorption spectrum showed three bands, confirming the spinel CoMn2O4. Morphological analysis revealed that the porous microstructure of CoMn2O4 was composed of nanoparticles with a size distribution of 16 to 58 nm. Gas sensors were fabricated with the CoMn2O4 powders calcined at 400 °C using the brush-coating method, and experimental results showed that CoMn2O4 nanoparticles were more sensitive to n-butanol than isopropanol and ethanol at an operating temperature of 185 °C. The CoMn2O4 sensor showed a response of 6.6 at 50 ppm n-butanol with good stability, reproducibility, and repeatability. The present article provides a new sensing material that could be used as an n-butanol sensor with significant benefits for human health.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nikolic, M.V., Milovanovic, V., Vasiljevic, Z.Z., Stamenkovic, Z.: Semiconductor gas sensors: Materials, technology, design, and application. Sensors 20, 1–31 (2020). (2020). https://doi.org/10.3390/s20226694

  2. Kim, G.S., Lim, Y., Shin, J., Yim, J., Hur, S., Song, H.C., Baek, S.H., Kim, S.K., Kim, J., Kang, C.Y., Jang, J.S.: Breathable MOFs layer on atomically grown 2D SnS2 for stable and selective surface activation. Adv. Sci. 10, 2301002 (2023). https://doi.org/10.1002/advs.202301002

    Article  CAS  Google Scholar 

  3. Jang, J.S., Kim, J.K., Kim, K., Jung, W.G., Lim, C., Kim, S., Kim, D.H., Kim, B.J., Han, J.W., Jung, W.C., Kim, I.D.: Dopant-driven positive reinforcement in ex-solution process: New strategy to develop highly capable and durable catalytic materials. Adv. Mater. 32, 2003983 (2020). https://doi.org/10.1002/adma.202003983

    Article  CAS  Google Scholar 

  4. Shin, J., Lee, G., Choi, M., Jang, H., Lim, Y., Kim, G.-S., Nam, S.-H., Baek, S.-H., Song, H.-C., Kim, J., Kang, C.-Y., Lee, J.-O., Jeon, S., Cho, D., Jang, J.-S.: Atomically mixed catalysts on a 3D thin-shell TiO2 for dual-modal chemical detection and neutralization. J. Mater. Chem. A. 11, 18195–18206 (2023). https://doi.org/10.1039/D3TA02160B

    Article  CAS  Google Scholar 

  5. Gao, X., Zhang, T.: An overview: Facet-dependent metal oxide semiconductor gas sensors. Sens. Actuators B Chem. 277, 604–633 (2018). https://doi.org/10.1016/j.snb.2018.08.129

    Article  CAS  Google Scholar 

  6. Dey, A.: Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B. 229, 206–217 (2018). https://doi.org/10.1016/j.mseb.2017.12.036

    Article  CAS  Google Scholar 

  7. Malik, R., Tomer, V.K., Mishra, Y.K., Lin, L.: Functional gas sensing nanomaterials: A panoramic view. Appl. Phys. Rev. 7, 021301 (2020). https://doi.org/10.1063/1.5123479

    Article  CAS  Google Scholar 

  8. Korotcenkov, G., Cho, B.K.: Porous semiconductors: Advanced material for gas sensor applications. Crit. Rev. Solid State Mater. Sci. 35, 1–37 (2010). (2010). https://doi.org/10.1080/10408430903245369

  9. Mirzaei, A., Leonardi, S.G., Neri, G.: Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceram. Int. 42, 15119–15141 (2016). https://doi.org/10.1016/j.ceramint.2016.06.145

    Article  CAS  Google Scholar 

  10. Wang, L., Liu, B., Ran, S., Wang, L., Gao, L., Qu, F., Chen, D., Shen, G.: Facile synthesis and electrochemical properties of CoMn2O4 anodes for high capacity lithium-ion batteries. J. Mater. Chem. A. 1, 2139–2143 (2013). https://doi.org/10.1039/c2ta00125j

    Article  CAS  Google Scholar 

  11. Ahuja, P., Sahu, V., Ujjain, S.K., Sharma, R.K., Singh, G.: Performance evaluation of asymmetric supercapacitor based on cobalt manganite modified graphene nanoribbons. Electrochim. Acta. 146, 429–436 (2014). https://doi.org/10.1016/j.electacta.2014.09.039

    Article  CAS  Google Scholar 

  12. Fierro, G., Lo Jacono, M., Inversi, M., Dragone, R., Ferraris, G.: Preparation, characterization and catalytic activity of co-zn-based manganites obtained from carbonate precursors. Appl. Catal. B: Environ. 30, 173–185 (2001). https://doi.org/10.1016/S0926-3373(00)00232-0

    Article  CAS  Google Scholar 

  13. Mark, M., Venkatachalam, J.A., Pramothkumar, A., Senthilkumar, A., Jothivenkatachalam, N., Jesuraj, K.: Investigation on structural, optical and photocatalytic activity of CoMn2O4 nanoparticles prepared via simple co-precipitation method. Phys. B Condens. 601, 412349 (2021). https://doi.org/10.1016/j.physb.2020.412349

    Article  CAS  Google Scholar 

  14. Morán-Lázaro, J.P., Guillen-López, E.S., López-Urias, F., Muñoz-Sandoval, E., Blanco-Alonso, O., Guillén-Bonilla, H., Guillén-Bonilla, A., Rodríguez-Betancourtt, V.M., Sanchez-Tizapa, M., Olvera-Amador, M.D.L.L.: Synthesis of ZnMn2O4 nanoparticles by a microwave-assisted colloidal method and their evaluation as a gas sensor of propane and carbon monoxide. Sensors. 18, 701 (2018). https://doi.org/10.3390/s18030701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morán-Lázaro, J.P., Blanco, O., Rodríguez-Betancourtt, V.M., Reyes-Gómez, J., Michel, C.R.: Enhanced CO2-sensing response of nanostructured cobalt aluminate synthesized using a microwave-assisted colloidal method. Sens. Actuators B Chem. 226, 518–524 (2016). https://doi.org/10.1016/j.snb.2015.12.013

    Article  CAS  Google Scholar 

  16. Zhou, L., Zhao, D., Lou, X.W.: Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 24, 745–748 (2012). https://doi.org/10.1002/adma.201104407

    Article  CAS  PubMed  Google Scholar 

  17. Li, J., Xiong, S., Li, X., Qian, Y.: A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale. 5, 2045–2054 (2013). https://doi.org/10.1039/c2nr33576j

    Article  CAS  PubMed  Google Scholar 

  18. Xu, Y., Wang, X., An, C., Wang, Y., Jiao, L., Yuan, H.: Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors. J. Mater. Chem. A. 2, 16480–16488 (2014). https://doi.org/10.1039/c4ta03123g

    Article  CAS  Google Scholar 

  19. Vigneshwaran, P., Kandiban, M., Senthil Kumar, N., Venkatachalam, V., Jayavel, R., Vetha Potheher, I.: A study on the synthesis and characterization of CoMn2O4 electrode material for supercapacitor applications. J. Mater. Sci. Mater. Electron. 27, 4653–4658 (2016). https://doi.org/10.1007/s10854-016-4343-6

    Article  CAS  Google Scholar 

  20. Marimuthu, G., Bharathi, G., Palanisamy, G., Albaqami, M.D., Karami, A.M., Mani, G., Pazhanivel, T.: Pyramid-shaped MMn2O4/rGO (M = Ni, Co) nanocomposites and their application in ammonia sensors. Appl. Nanosci. 13, 3819–3826 (2023). https://doi.org/10.1007/s13204-022-02560-0

    Article  CAS  Google Scholar 

  21. Larbi, T., Ben Said, L., Ben Daly, A., Ouni, B., Labidi, A., Amlouk, M.: Ethanol sensing properties and photocatalytic degradation of methylene blue by Mn3O4, NiMn2O4 and alloys of Ni-manganates thin films. J. Alloys Compd. 686, 168–175 (2016). https://doi.org/10.1016/j.jallcom.2016.06.001

    Article  CAS  Google Scholar 

  22. Guillén-López, E.S., López-Urías, F., Muñoz-Sandoval, E., Courel-Piedrahita, M., Sanchez-Tizapa, M., Guillén-Bonilla, H., Rodríguez-Betancourtt, V.M., Blanco-Alonso, O., Guillén-Bonilla, A., Morán-Lázaro, J.P.: High performance isopropanol sensor based on spinel ZnMn2O4 nanoparticles. Mater. Today Commun. 26, 102138 (2021). https://doi.org/10.1016/j.mtcomm.2021.102138

    Article  CAS  Google Scholar 

  23. Kamioka, N., Ichitsubo, T., Uda, T., Imashuku, S., Taninouchi, Y.K., Matsubara, E.: Synthesis of spinel-type magnesium cobalt oxide and its electrical conductivity. Mater. Trans. 49, 824–828 (2008). https://doi.org/10.2320/matertrans.MBW200721

    Article  CAS  Google Scholar 

  24. Peiteado, M., Caballero, A.C., Makovec, D.: Thermal evolution of ZnCo2O4 spinel phase in air. J. Ceram. Soc. Jpn. 118, 337–340 (2010)

    Article  CAS  Google Scholar 

  25. Zhang, Y., Gao, W., Ji, S., Jia, N.: A unique nanosheet assembled CoMn2O4 hollow nanospheres as superior cyclability anode materials for lithium-ion batteries. J. Alloys Compd. 786, 428–433 (2019). https://doi.org/10.1016/j.jallcom.2019.02.004

    Article  CAS  Google Scholar 

  26. Yang, G., Xu, X., Yan, W., Yang, H., Ding, S.: Single-spinneret electrospinning fabrication of CoMn2O4 hollow nanofibers with excellent performance in lithium-ion batteries. Electrochim. Acta. 137, 462–469 (2014). https://doi.org/10.1016/j.electacta.2014.05.167

    Article  CAS  Google Scholar 

  27. Malavasi, L., Galinetto, P., Mozzati, M.C., Azzoni, C.B., Flor, G.: Raman spectroscopy of AMn2O4 (A = mn, mg and zn) spinels. Phys. Chem. Chem. Phys. 4, 3876–3880 (2002). https://doi.org/10.1039/b203520k

    Article  CAS  Google Scholar 

  28. Bijelić, M., Liu, X., Sun, Q., Djurišić, A.B., Xie, M.H., Ng, A.M.C., Suchomski, C., Djerdj, I., Skoko, Ž., Popović, J.: Long cycle life of CoMn2O4 lithium ion battery anodes with high crystallinity. J. Mater. Chem. A. 3, 14759–14767 (2015). https://doi.org/10.1039/c5ta03570h

    Article  CAS  Google Scholar 

  29. Jiu, H., Ren, N., Jiang, L., Zhang, Q., Gao, Y., Meng, Y., Zhang, L.: Hierarchical porous CoMn2O4 microspheres with sub-nanoparticles as advanced anode for high-performance lithium-ion batteries. J. Solid State Electrochem. 22, 2747–2755 (2018). https://doi.org/10.1007/s10008-018-3987-y

    Article  CAS  Google Scholar 

  30. Pan, X., Ma, J., Yuan, R., Yang, X.: Layered double hydroxides for preparing CoMn2O4 nanoparticles as anodes of lithium ion batteries. Mater. Chem. Phys. 194, 137–141 (2017). https://doi.org/10.1016/j.matchemphys.2017.03.038

    Article  CAS  Google Scholar 

  31. Stringhini, F.M., Foletto, E.L., Sallet, D., Bertuol, D.A., Chiavone-Filho, O.: Oller do Nascimento, C.A.: Synthesis of porous zinc aluminate spinel (ZnAl2O4) by metal-chitosan complexation method. J. Alloys Compd. 588, 305–309 (2014). https://doi.org/10.1016/j.jallcom.2013.11.078

  32. Morán-Lázaro, J.P., López-Urías, F., Muñoz-Sandoval, E., Courel-Piedrahita, M., Carreon-Alvarez, A., Rodríguez-Betancourtt, V.M., Zamudio-Torres, I., Guillén-López, E.S., Palafox-Corona, A.: Evaluation of MgCo2O4 nanoparticles as a gas sensor for the detection of acetone in the diabetic and non-diabetic range. Electron. Mater. Lett. 19, 66–75 (2023). https://doi.org/10.1007/s13391-022-00371-7

    Article  CAS  Google Scholar 

  33. LaMer, V.K., Dinegar, R.H.: Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 72, 4847–4854 (1950). https://doi.org/10.1021/ja01167a001

    Article  CAS  Google Scholar 

  34. Hosseini, S.A., Niaei, A., Salari, D., Nabavi, S.R.: Nanocrystalline AMn2O4 (A = co, Ni, Cu) spinels for remediation of volatile organic compounds–Synthesis, characterization and catalytic performance. Ceram. Int. 38, 1655–1661 (2012). https://doi.org/10.1016/j.ceramint.2011.09.057

    Article  CAS  Google Scholar 

  35. Tauc, J., Grigorovici, R., Vancu, A.: Optical properties and electronic structure of amorphous aermanium. Phys. Status Solidi. 15, 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  36. Sanad, M.M.S., Yousef, A.K., Rashad, M.M., Naggar, A.H., El-Sayed, A.Y.: Robust and facile strategy for tailoring CoMn2O4 and MnCo2O4 structures as high capacity anodes for Li-ions batteries. Phys. B Condens. Matter. 579, 411889 (2020). https://doi.org/10.1016/j.physb.2019.411889

    Article  CAS  Google Scholar 

  37. Liu, T., Liu, J., Hao, Q., Liu, Q., Jing, X., Zhang, H., Huang, G., Wang, J.: Porous tungsten trioxide nanolamellae with uniform structures for high-performance ethanol sensing. Cryst. Eng. Comm. 18, 8411–8418 (2016). https://doi.org/10.1039/c6ce01587e

    Article  CAS  Google Scholar 

  38. Dong, C., Liu, X., Xiao, X., Chen, G., Wang, Y., Djerdj, I.: Combustion synthesis of porous Pt-functionalized SnO2 sheets for isopropanol gas detection with a significant enhancement in response. J. Mater. Chem. A. 2, 20089–20095 (2014). https://doi.org/10.1039/c4ta04251d

    Article  CAS  Google Scholar 

  39. Song, X.Z., Meng, Y.L., Chen, X., Sun, K.M., Wang, X.F.: Hollow NiFe2O4 hexagonal biyramids for high-performance n-propanol sensing at low temperature. New. J. Chem. 42, 14071–14074 (2018). https://doi.org/10.1039/c8nj02438c

    Article  CAS  Google Scholar 

  40. Kaneti, Y.V., Yue, J., Jiang, X., Yu, A.: Controllable synthesis of ZnO nanoflakes with exposed (1010) for enhanced gas sensing performance. J. Phys. Chem. C. 117, 13153–13162 (2013). https://doi.org/10.1021/jp404329q

    Article  CAS  Google Scholar 

  41. Fan, F., Tang, P., Wang, Y., Feng, Y., Chen, A., Luo, R., Li, D.: Facile synthesis and gas sensing properties of tubular hierarchical ZnO self-assembled by porous nanosheets. Sens. Actuators B Chem. 215, 231–240 (2015). https://doi.org/10.1016/j.snb.2015.03.048

    Article  CAS  Google Scholar 

  42. Xu, Y., Zheng, L., Yang, C., Zheng, W., Liu, X., Zhang, J.: Chemiresistive sensors based on core-shell ZnO@TiO2 nanorods designed by atomic layer deposition for n-butanol detection. Sens. Actuators B Chem. 310, 127846 (2020). https://doi.org/10.1016/j.snb.2020.127846

    Article  CAS  Google Scholar 

  43. Chu, S., Yang, C., Su, X.: Synthesis of NiO hollow nanospheres via Kirkendall effect and their enhanced gas sensing performance. Appl. Surf. Sci. 492, 82–88 (2019). https://doi.org/10.1016/j.apsusc.2019.06.226

    Article  CAS  Google Scholar 

  44. Wang, Y., Zhang, B., Liu, J., Yang, Q., Cui, X., Gao, Y., Chuai, X., Liu, F., Sun, P., Liang, X., Sun, Y., Lu, G.: Au-loaded mesoporous WO3: Preparation and n-butanol sensing performances. Sens. Actuators B Chem. 236, 67–76 (2016). https://doi.org/10.1016/j.snb.2016.05.097

    Article  CAS  Google Scholar 

  45. Zhu, G., Xi, C., Xu, H., Zheng, D., Liu, Y., Xu, X., Shen, X.: Hierarchical NiO hollow microspheres assembled from nanosheet-stacked nanoparticles and their application in a gas sensor. RSC Adv. 2, 4236–4241 (2012). https://doi.org/10.1039/c2ra01307j

    Article  CAS  Google Scholar 

  46. Huang, J., Xu, X., Gu, C., Yang, M., Yang, M., Liu, J.: Large-scale synthesis of hydrated tungsten oxide 3D architectures by a simple chemical solution route and their gas-sensing properties. J. Mater. Chem. 21, 13283–13289 (2011). https://doi.org/10.1039/c1jm11292a

    Article  CAS  Google Scholar 

  47. Ji, H., Zeng, W., Li, Y.: Gas sensing mechanisms of metal oxide semiconductors: A focus review. Nanoscale. 11, 22664–22684 (2019). https://doi.org/10.1039/c9nr07699a

    Article  CAS  PubMed  Google Scholar 

  48. Zhao, S., Shen, Y., Yan, X., Zhou, P., Yin, Y., Lu, R., Han, C., Cui, B., Wei, D.: Complex-surfactant-assisted hydrothermal synthesis of one-dimensional ZnO nanorods for high-performance ethanol gas sensor. Sens. Actuators B Chem. 286, 501–511 (2019). https://doi.org/10.1016/j.snb.2019.01.127

    Article  CAS  Google Scholar 

  49. Huang, J., Wang, L., Gu, C., Wang, Z., Sun, Y., Shim, J.J.: Preparation of porous SnO2 microcubes and their enhanced gas-sensing property. Sens. Actuators B Chem. 207, 82–790 (2015). https://doi.org/10.1016/j.snb.2014.10.128

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Environment and Renewable Energy Laboratory-CUValles for Raman, UV-vis, and sensing measurements. We thank Solid-State Chemistry Laboratory-CUCEI for the synthesis of the materials. We would like to thank Armando Rentería for his technical assistance in XRD and SEM analysis from Electron Microscopies Laboratory-CUCEI. We also thank LINAN and IPICYT for the characterization facilities and M.Sc. Ana Iris Peña-Maldonado and Dr. Héctor G. Silva-Pereyra for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Morán-Lázaro.

Ethics declarations

Competing Interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morán-Lázaro, J.P., Courel-Piedrahita, M., Guillén-Bonilla, A. et al. A Novel Sensor for the Detection of n-Butanol Based on CoMn2O4 Nanoparticles. Electron. Mater. Lett. (2024). https://doi.org/10.1007/s13391-024-00498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13391-024-00498-9

Keywords

Navigation