Skip to main content
Log in

Magnetite–Polyaniline Nanocomposite for Non-Volatile Memory and Neuromorphic Computing Applications

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Conducting polymers are proving to be useful for   construction of resistive switching devices. This work reports the fabrication of a resistive switching device using Magnetite-Polyaniline (Fe3O4-PANI) nanocomposite. The device showed good non-volatile memory properties and can mimic neuromorphic synaptic behavior. Initially, Fe3O4 nanoparticles were synthesized using the co-precipitation method and PANI by oxidative polymerization and their nanocomposites of different compositions were prepared and fully characterized. The 10% Fe3O4-PANI-based RS device outperforms all others in terms of I–V switching performance. Furthermore, the optimized device (10% Fe3O4-PANI) has tuneable I–V characteristics. The device demonstrated excellent analog switching at ± 1.5 V and digital switching at ± 2.5 V. The memristive behavior of the Ag/10% Fe3O4-PANI/FTO device was confirmed by the pinched hysteresis loop in the I–V curves at different voltages, as well as the double-valued charged-flux characteristics. The device has good cycle-to-cycle reliability for switching voltages and switching currents, as demonstrated by the Weibull distribution and other statistical measures. Moreover, the device can retain memory states up to 6 × 103 s and shows a switching stability of 2 × 104 cycles. The device also showed linear potentiation and depression characteristics and mimicked excitatory post-synaptic current (EPSC) and paired-pulse facilitation (PPF) index properties similar to its biological counterpart. According to the charge transport model fitting results, the Ohmic and Child’s square laws dominated in both analog and digital switching processes, and RS occurs due to the filamentary process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No data was used.

References

  1. Ielmini, D., Wong, H.S.P.: In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018)

    Article  Google Scholar 

  2. Mutlu, O., Ghose, S., Gomez-Luna, J., Ausavarungnirun, R.: Processing data where it makes sense: enabling in-memory computation. Microprocess. Microsyst. 67, 28–41 (2019)

    Article  Google Scholar 

  3. Kvatinsky, S., Ottavi, M.: Novel applications enabled by memristors. IEEE Nanotechnol. Mag. 16, 3–3 (2022)

    Article  Google Scholar 

  4. Cao, J., Zhang, X., Cheng, H., Qiu, J., Liu, X., Wang, M., Liu, Q.: Emerging dynamic memristors for neuromorphic reservoir computing. Nanoscale 14, 289–298 (2022)

    Article  CAS  PubMed  Google Scholar 

  5. Pawar, A.V., Kanapally, S.S., Kadam, K.D., Patil, S.L., Dongle, V.S., Jadhav, S.A., Dongale, T.D.: MemSens: a new detection method for heavy metals based on silver nanoparticle assisted memristive switching principle. J. Mater. Sci. Mater. Electron. 30, 11383–11394 (2019)

    Article  CAS  Google Scholar 

  6. Zou, X., Xu, S., Chen, X., Yan, L., Han, Y.: Breaking the von Neumann bottleneck: architecture-level processing-in-memory technology. Sci. China. Inf. Sci. 64, 160404 (2021)

    Article  Google Scholar 

  7. Chua, L.: Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)

    Article  CAS  Google Scholar 

  8. Chua, L.: Memristor-the missing circuit element. IEEE Transactions On Circuit Theory. 18, 507–519 (1971)

    Article  Google Scholar 

  9. Bao, H., Zhou, H., Li, J., Pei, H., Tian, J., Yang, L., Ren, S., Tong, S., Li, Y., He, Y., Chen, J., Cai, Y., Wu, H., Liu, Q., Wan, Q., Miao, X.: Toward memristive in-memory computing: principles and applications. Front Optoelectron. 15, 23 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu, Q., Gao, S., Xu, L., Yue, W., Zhang, C., Kan, H., Li, Y., Shen, G.: Nanostructured perovskites for nonvolatile memory devices. Chem. Soc. Rev. 51, 3341–3379 (2022)

    Article  CAS  PubMed  Google Scholar 

  11. Liu, X., Cao, J., Qiu, J., Zhang, X., Wang, M., Liu, Q.: Flexible and stretchable memristive arrays for in-memory computing. Front. Nanosci. 3, 821687 (2022)

    Google Scholar 

  12. Dongale, T., Khot, S., Patil, A., Wagh, S., Patil, P., Duba, D., Kim, T.: Bifunctional nanoparticulated nickel ferrite thin films: resistive memory and aqueous battery applications. Mater. Des. 201, 109493 (2021)

    Article  CAS  Google Scholar 

  13. Chen, F., Zhou, Y., Zhu, Y., Zhu, R., Guan, P., Fan, J., Zhou, L., Valanoor, N., Wegner, F.V., Saribatir, E., Birznieks, I., Wan, T., Chu, D.: Recent progress in artificial synaptic devices. J. Mater. Chem. C. 9, 8372–8394 (2021)

    Article  Google Scholar 

  14. Rehman, M.M., Rehman, H.M.M.U., Gul, J.Z., Kim, W.Y., Karimov, K.S., Ahmed, N.: Decade of 2D-materials-based RRAM devices: a review. Sci. Technol. Adv. Mater. 21, 147–186 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Emelyanov, A.V., Lapkin, D.A., Demin, V.A., Erokhin, V.V., Battistoni, S., Baldi, G., Dimonte, A., Korovin, A.N., Lannotta, S., Kashkarov, P.K., Kovalchuk, M.V.: First step towards the realization of a double layer perceptron based on organic memristive devices. AIP Adv. 6, 111301 (2016)

    Article  Google Scholar 

  16. Ishibe, T., Maeda, Y., Terada, T., Naruse, N., Mera, Y., Kobayashi, E., Nakamura, Y.: Resistive switching memory performance in oxide hetero-nanocrystals with well-controlled interfaces. Sci. Technol. Adv. Mater. 21(1), 195–204 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chang, C.F., Chen, J.Y., Huang, G.M., Lin, T.Y., Tai, K.L., Huang, C.Y., Yeh, P.H., Wu, W.W.: Revealing conducting filament evolution in low power and high reliability Fe3O4/Ta2O5 bilayer RRAM. Nano Energy 53, 871–879 (2018)

    Article  CAS  Google Scholar 

  18. Lapkin, D.A., Emelyanov, A.V., Demin, V.A., Erokhin, V.V., Feigin, L.A., Kashkarov, P.K., Kovalchuk, M.V.: Polyaniline-based memristive microdevice with high switching rate and endurance. Appl. Phys. Lett. 112, 043302 (2018)

    Article  Google Scholar 

  19. Cifarelli, A., Berzina, T., Parisini, A., Iannotta, S.: Memristive response and electrochemical processes in polyaniline based organic devices. Org. Electron. 83, 105757 (2020)

    Article  CAS  Google Scholar 

  20. Eskandari, F., Shabani, P., Yousefi, R.: Simultaneous protonation/deprotonation mechanism in polyaniline-based devices as complementary resistive switches. Org. Electron. 79, 105628 (2020)

    Article  CAS  Google Scholar 

  21. Patil, S., Chougule, M., Rane, T., Khot, S., Patil, A., Bagal, O., Jadhav, S., Sheikh, A., Kim, S., Dongale, T.: Solution-processable ZnO thin film memristive device for resistive random access memory application. Electronics 7, 445 (2018)

    Article  CAS  Google Scholar 

  22. Liu, R., Qiu, H., Zong, H., Fang, C.: Fabrication and characterization of composite containing HCl-doped polyaniline and Fe nanoparticles. J. Nanomater. 2012, 674104 (2011)

    Google Scholar 

  23. Patil, K., Nirmal, K., Jadhav, S., Patil, S.: Bipolar resistive switching and non-volatile memory properties of MnO2-polyaniline (PANI) nanocomposite. Materialia. 15, 101026 (2021)

    Article  CAS  Google Scholar 

  24. Ouyang, Z.W., Chen, E.C., Wu, T.M.: Thermal stability and magnetic properties of polyvinylidene fluoride/magnetite nanocomposites. Materials. 8, 4553–4564 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Val ́erio, A., Morelh ̃ao, S. L.: Usage of Scherrer’s formula in X-ray diffraction analysis of size distribution in systems of monocrystalline nanoparticles. Cond. Mat. Mtrl. Sci. (2019): https://doi.org/10.48550/arXiv.1911.00701

  26. Yew, Y.P., Shameli, K., Miyake, M., Kuwano, N., Khairudin, N.B.B.A., Mohamad, S.E.B., Lee, K.X.: Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Res. Lett. 11, 276 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gu, H., Huang, Y., Zhang, X., Wang, Q., Zhu, J., Shao, L., Haldolaarachchige, N., Young, D.P., Wei, S., Guo, Z.: Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties. Polymer 53, 801–809 (2012)

    Article  CAS  Google Scholar 

  28. Ghorbani, M., Fazli, S., Lashkenari, M.S.: Fabrication of PMMA/PANI/Fe3O4 as a novel conducting hybrid coating. Polym. Plast. Technol. Eng. 57, 591–599 (2018)

    Article  CAS  Google Scholar 

  29. Dongale, T., Khot, A., Takaloo, A., Son, K., Kim, T.: Multilevel resistive switching and synaptic plasticity of nanoparticulated cobaltite oxide memristive device. J. Mater. Sci. Technol. 78, 81–91 (2021)

    Article  CAS  Google Scholar 

  30. Li, Y., Chu, J., Duan, W., Cai, G., Fan, X., Wang, X., Wang, G., Pei, Y.: Analog and digital bipolar resistive switching in solution-combustion-processed NiO memristor. ACS Appl. Mater. Interfaces 10, 24598–24606 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. Du, N., Shuai, Y., Luo, W., Mayr, C., Schüffny, R., Schmidt, O., Schmidt, H.: Practical guide for validated memristance measurements. Rev. Sci. Instrum. 84, 023903 (2013)

    Article  PubMed  Google Scholar 

  32. Patil, A., Dongale, T., Nirmale, S., Kamat, R., Rajpure, K.: Bipolar resistive switching and memristive properties of sprayed deposited Bi2WO6 thin films. Mater. Today Commun. 28, 102621 (2021)

    Article  CAS  Google Scholar 

  33. Dongle, V.S., Dongare, A.A., Mullani, N.B., Pawar, P.S., Patil, P.B., Heo, J., Park, T.J., Dongale, T.D.: Development of self-rectifying ZnO thin film resistive switching memory device using successive ionic layer adsorption and reaction method. J. Mater. Sci. Mater. Electron. 29, 18733–18741 (2018)

    Article  CAS  Google Scholar 

  34. Rana, A.M., Akbar, T., Ismail, M., Ahmad, E., Hussain, F., Talib, I., Imran, M., Mehmood, K., Iqbal, K., Nadeem, M.Y.: Endurance and cycle-to-cycle uniformity improvement in tri-layered CeO2/Ti/CeO2 resistive switching devices by changing top electrode material. Sci. Rep. 7, 39539 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, W., Wang, C., Liu, G., Wang, J., Chen, Y., Li, R.W.: Structural effect on the resistive switching behavior of triphenylamine-based poly(azomethine)s. Chem. Commun. 50, 11496–11499 (2014)

    Article  CAS  Google Scholar 

  36. Simanjuntak, F.M., Chandrasekaran, S., Gapsari, F., Tseng, T.Y.: Switching and synaptic characteristics of AZO/ZnO/ITO valence change memory device. IOP Conf Ser: Mater. Sci. Eng. 494, 012027 (2019)

    Article  CAS  Google Scholar 

  37. Ryu, H., Kim, S.: Self-rectifying resistive switching and short-term memory characteristics in Pt/HfO2/TaOx/TiN artificial synaptic device. Nanomaterials 10, 2159 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, T., Meng, J., He, Z., Chen, L., Zhu, H., Sun, Q., Ding, S., Zhou, P., Zhang, D.: Room-temperature developed flexible biomemristor with ultralow switching voltage for array learning. Nanoscale 12, 9116 (2020)

    Article  CAS  PubMed  Google Scholar 

  39. Zhu, S., Sun, B., Ranjan, S., Zhu, X., Zhuo, G., Zhoa, H., Mao, S., Wang, H., Zhao, Y., Fu, G.: Mechanism analysis of a flexible organic memristive memory with capacitance effect and negative differential resistance state. APL Mat. 7, 081117 (2019)

    Article  Google Scholar 

  40. Mao, Q., Ji, Z., Xi, J.: Realization of forming-free ZnO-based resistive switching memory by controlling film thickness. J. Phys. D Appl. Phys. 43, 395104 (2010)

    Article  Google Scholar 

  41. Killedar, S., Ahir, N., Morankar, P., Tiwari, A., Patil, P., Dongale, T., Kim, D.: Organic dye-sensitized f-MWCNTs-TiO2 composite for optically controlled resistive switching memory applications. Opt. 109, 110333 (2020)

    CAS  Google Scholar 

  42. Patil, S., Redekar, R., Pawarm, O., Kundale, S., Sutar, S., More, S., Chavan, V., Kim, D., Dongale, T., Tarwal, N.: Precursor-dependent resistive switching properties of nanostructure g-C3N4: statistical and experimental investigations. J. Mater. Sci. Mater. Electron. 34, 155 (2023)

    Article  CAS  Google Scholar 

  43. Khot, A.C., Dongale, T.D., Nirmal, K.A., Sung, J.H., Lee, H.J., Nikam, R.D., Kim, T.G.: Amorphous boron nitride memristive device for high-density memory and neuromorphic computing applications. ACS Appl. Mater. Interfaces 14, 10546–10557 (2022)

    Article  CAS  PubMed  Google Scholar 

  44. Pawar, P.S., Tikke, R.S., Patil, V.B., Mullani, N.B., Waifalkar, P.P., Khot, K.V., Teli, A.M., Sheikh, A.D., Dongale, T.D.: A low-cost copper oxide thin film memristive device based on successive ionic layer adsorption and reaction method. Mater. Sci. Semicond. Process. 71, 102–108 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

IUS: Investigation; Methodology & Writing—original draft SLP: Investigation; Methodology & Writing—original draft SAJ: Visualization; Resources; Writing—review & editing; Supervision TDD: Resources; Writing—review & editing, Supervision RKK: Resources.

Corresponding author

Correspondence to Sushilkumar A. Jadhav.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest or known competing interests associated with this work.

Consent for publication

All authors provided their consent for the publication.

Ethical approval

Authors approve that the submitted work is original and has not been published elsewhere in any form or language (partially or in full).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 464 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, I.U., Patil, S.L., Jadhav, S.A. et al. Magnetite–Polyaniline Nanocomposite for Non-Volatile Memory and Neuromorphic Computing Applications. Electron. Mater. Lett. (2024). https://doi.org/10.1007/s13391-024-00495-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13391-024-00495-y

Keywords

Navigation