Skip to main content
Log in

Optoelectronic Synapse Behaviors of HfS2 Grown via Molten Salt Flux Method

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Layered two-dimensional materials are promising candidates for next-generation semiconductor platforms owing to their atomically thin bodies, and it is crucial to develop a method for their large-scale synthesis for integrating these materials into the fabrication process. Here, we report the synthesis of a centimeter-scale HfS2 ingot using the molten salt flux method (MSFM). The structure, crystallinity, and uniformity of the synthesized HfS2 sample were verified using X-ray diffraction and Raman spectroscopy. The chemical properties were investigated using X-ray photoelectron spectroscopy. A HfS2 synaptic field effect transistor (FET) was fabricated to confirm its electrical uniformity and semiconducting nature, with an average mobility of 10.6 cm2 V-1 s-1. The synaptic plasticity of the HfS2 synaptic FET was investigated by applying light pulses (405 nm) in different modulation configurations. Paired-pulse facilitation was achieved by applying a continuous light pulse with a negative gate bias voltage. The modulation of synaptic weight was demonstrated under different stimulation conditions, which emulates the human brain. Furthermore, the linearity of the HfS2 synaptic device was optimized based on the frequency of the pulses to enhance learning accuracy. The approach reported here encourages the large-scaled production of transition metal dichalcogenides (TMDs) for use in artificial synaptic transistors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data supporting the plots and other findings are available from the corresponding author upon request.

References

  1. Beck, M.E., Hersam, M.C.: Emerging opportunities for Electrostatic Control in Atomically Thin devices. ACS Nano. 14, 6498–6518 (2020)

    Article  CAS  PubMed  Google Scholar 

  2. Fang, N., Nagashio, K.: Accumulation-Mode two-Dimensional Field-Effect Transistor: Operation mechanism and thickness scaling rule. ACS Appl. Mater. Interfaces. 10, 32355–32364 (2018)

    Article  CAS  PubMed  Google Scholar 

  3. Zhang, M., Fan, Z.H., Jiang, X.X., Zhu, H., Chen, L., Xia, Y.D., Yin, J., Liu, X.K., Sun, Q.Q.: Zhang.: MoS-based charge-trapping synaptic device with electrical and optical modulated conductance. Nanophotonics-Berlin. 9, 2475–2486 (2020)

    Article  CAS  Google Scholar 

  4. Wang, C., Liu, H., Chen, L., Zhu, H., Ji, L., Sun, Q.Q., Zhang, D.W.: Ultralow-Power synaptic Transistor based on Wafer-Scale MoS Thin Film for Neuromorphic Application. IEEE Electron Device Lett. 42, 1555–1558 (2021)

    Article  CAS  Google Scholar 

  5. Arnold, A.J., Razavieh, A., Nasr, J.R., Schulman, D.S., Eichfeld, C.M.: Das.: Mimicking Neurotransmitter Release in Chemical synapses Hysteresis Engineering in MoS transistors. Acs Nano. 11, 3110–3118 (2017)

    Article  CAS  PubMed  Google Scholar 

  6. Xiong, H., Xu, L.P., Gao, C.F., Zhang, Q., Deng, M.H., Wang, Q.F., Zhang, J.Z., Fuchs, D., Li, W.W., Cui, A.Y., Shang, L.Y., Jiang, K., Hu, Z.G.: Chu.: Optically modulated HfS-Based synapses for Artificial Vision systems. ACS Appl. Mater. Interfaces. 13, 50132–50140 (2021)

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Q.F., Jiang, R.Q., Gao, Z.T., Deng, M.H., Chen, J.H., Zhu, L.Q., Shang, L.Y., Li, Y.W., Fuchs, D., Zhang, J.Z., Hu, Z.G.: A HfS-based photoelectronic synaptic transistor with tunable synaptic plasticity for emotional memory. Appl. Surf. Sci. 613, 156148 (2023)

    Article  CAS  Google Scholar 

  8. Wang, S.Y., Zhang, D.W., Zhou, P.: Two-dimensional materials for synaptic electronics and neuromorphic systems. Sci. Bull. 64, 1056–1066 (2019)

    Article  Google Scholar 

  9. Susarla, S., Kutana, A., Hachtel, J.A., Kochat, V., Apte, A., Vajtai, R., Idrobo, J.C., Yakobson, B.I., Tiwary, C.S., Ajayan, P.M.: Quaternary 2D transition metal dichalcogenides (TMDs) with Tunable Bandgap. Adv. Mater. 29, 1702457 (2017)

    Article  Google Scholar 

  10. Ramasubramaniam, A., Naveh, D., Towe, E.: Tunable band gaps in bilayer transition-metal dichalcogenides. Phys. Rev. B. 84, 2053215 (2011)

    Article  Google Scholar 

  11. Chaves, A., Azadani, J.G., Alsalman, H., da Costa, D.R., Frisenda, R., Chaves, A.J., Song, S.H., Kim, Y.D., He, D.W., Zhou, J.D., Castellanos-Gomez, A., Peeters, F.M., Liu, Z., Hinkle, C.L., Oh, S.H., Ye, P.D., Koester, S.J., Lee, Y.H., Avouris, P., Wang, X.R.: Bandgap engineering of two-dimensional semiconductor materials. Npj 2d Mater. Appl. 4, 1–21 (2020)

    Article  Google Scholar 

  12. Jiménez, D.: Drift-diffusion model for single layer transition metal dichalcogenide field-effect transistors. Appl. Phys. Lett. 101, 243501 (2012)

    Article  Google Scholar 

  13. Wang, D.G., Zhang, X.W., Wang, Z.G.: Recent advances in Properties, synthesis and applications of two-dimensional HfS. J. Nanosci. Nanotechno. 18, 7319–7334 (2018)

    Article  CAS  Google Scholar 

  14. Yan, C.Y., Gan, L., Zhou, X., Guo, J., Huang, W.J., Huang, J.W., Jin, B., Xiong, J., Zhai, T.Y.: Li.: Space-confined Chemical Vapor Deposition synthesis of ultrathin HfS Flakes for Optoelectronic Application. Adv. Funct. Mater. 27, 1702918 (2017)

    Article  Google Scholar 

  15. Cao, Y., Wähler, T., Park, H., Will, J., Prihoda, A., Moses Badlyan, N., Fromm, L., Yokosawa, T., Wang, B., Guldi, D.M., Görling, A., Maultzsch, J., Unruh, T., Spiecker, E., Halik, M., Libuda, J.: Area-Selective Growth of HfS2 Thin films via Atomic Layer deposition at low temperature. Adv. Mater. Interfaces. 7, 2001493 (2020)

    Article  CAS  Google Scholar 

  16. Gupta, S.K., Mao., Y.: Recent developments on molten salt synthesis of Inorganic nanomaterials: A review. J. Phys. Chem. C. 125, 6508–6533 (2021)

    Article  CAS  Google Scholar 

  17. Zhang, L.Z., Chen, C., Zhou, J.D., Yang, G.L., Wang, J.M., Liu, D., Chen, Z.Q., Lei, W.W.: Solid phase exfoliation for producing Dispersible Transition Metal Dichalcogenides Nanosheets. Adv. Funct. Mater. 30, 2004139 (2020)

    Article  CAS  Google Scholar 

  18. Gupta, S.K., Mao., Y.B.: A review on molten salt synthesis of metal oxide nanomaterials: Status, opportunity, and challenge. Prog Mater. Sci. 117, 100734 (2021)

    Article  CAS  Google Scholar 

  19. Kanazawa, T., Amemiya, T., Ishikawa, A., Upadhyaya, V., Tsuruta, K., Tanaka, T., Miyamoto, Y.: Few-layer HfS transistors. Sci. Rep. 6, 1–9 (2016)

    Article  Google Scholar 

  20. Feng, P., Xu, W.W., Yang, Y., Wan, X., Shi, Y., Wan, Q., Zhao, J.W.: Z. Cui.: Printed Neuromorphic devices based on printed Carbon Nanotube Thin-Film transistors. Adv. Funct. Mater. 27, 160447 (2017)

    Article  Google Scholar 

  21. Guo, L.Q., Zhu, L.Q., Ding, J.N., Huang, Y.K.: Paired-pulse facilitation achieved in protonic/electronic hybrid indium gallium zinc oxide synaptic transistors. Aip Adv. 5, 087112 (2015)

    Article  Google Scholar 

  22. Guo, T., Ge, J.W., Sun, B., Pan, K.Q., Pan, Z., Wei, L., Yan, Y., Zhou, Y.N.: Wu.: Soft Biomaterials Based Flexible Artificial Synapse for Neuromorphic Computing. Adv. Electron. Mater. 8, 2200449 (2022)

    Article  CAS  Google Scholar 

  23. Castillo, P.E.: Presynaptic LTP and LTD of excitatory and inhibitory synapses. Csh Perspect. Biol. 4, a005728 (2012)

    Google Scholar 

  24. Zheng, B.J., Chen, Y.F., Wang, Z.G., Qi, F., Huang, Z.S., Hao, X., Li, P.J., Zhang, W.L., Li, Y.R.: Vertically oriented few-layered HfS nanosheets: Growth mechanism and optical properties. 2d Mater. 3, 035024 (2016)

    Article  Google Scholar 

  25. Wang, D.G., Zhang, X.W., Guo, G.C., Gao, S.H., Li, X.X., Meng, J.H., Yin, Z.G., Liu, H., Gao, M.L., Cheng, L.K., You, J.B., Wang, R.Z.: Large-area synthesis of layered HfS Se alloys with fully tunable Chemical compositions and Bandgaps. Adv. Mater. 30, 1803285 (2018)

    Article  Google Scholar 

  26. Gao, J., Li, L., Tan, J.W., Sun, H., Li, B.C., Idrobo, J.C., Singh, C.V., Lu, T.M.: Koratkar.: Vertically oriented arrays of ReS nanosheets for Electrochemical Energy Storage and Electrocatalysis. Nano Lett. 16, 3780–3787 (2016)

    Article  CAS  PubMed  Google Scholar 

  27. Yang, L.L., Liu, D.Y., Li, J., Yi, Q., Yi, J., Huang, B., Miao, L.L., Wu, M., Zhao, C.J.: Broadband optical response of layered nickel ditelluride towards the mid-infrared regime. Opt. Mater. Express. 10, 1335–1343 (2020)

    Article  Google Scholar 

  28. Zhao, Q.Y., Guo, Y.H., Si, K.Y., Ren, Z.Y., Bai, J.T., Xu, X.L.: Elastic, electronic, and dielectric properties of bulk and monolayer ZrS, ZrSe, HfS, HfSe from Van Der Waals density-functional theory. Phys. Status Solidi B. 254, 1700033 (2017)

    Article  Google Scholar 

  29. Hodul, D.T., Stacy, A.M.: Anomalies in the properties of Hf(S2 – xTex)1 – y and hf(Se2 – xTex)1 – y near the metal-insulator transition. J. Solid State Chem. 54, 438–446 (1984)

    Article  CAS  Google Scholar 

  30. Lai, S., Byeon, S., Jang, S.K., Lee, J., Lee, B.H., Park, J.H., Kim, Y.H.: Lee.: HfO/HfS hybrid heterostructure fabricated controllable chemical conversion of two-dimensional HfS. Nanoscale. 10, 18758–18766 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. Rorvik, P.M., Lyngdal, T., Sæterli, R., van Helvoort, A.T.J., Holmestad, R., Grande, T., Einarsrud, M.A.: Influence of volatile chlorides on the molten salt synthesis of ternary oxide nanorods and nanoparticles. Inorg. Chem. 47, 3173–3181 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. Wang, X.Y., Huang, K.K., Yuan, L., Li, S., Ma, W., Liu, Z.Y., Feng, S.H.: Molten salt flux synthesis, Crystal Facet Design, characterization, electronic structure, and Catalytic Properties of Perovskite Cobaltite. ACS Appl. Mater. Interfaces. 10, 28219–28231 (2018)

    Article  CAS  PubMed  Google Scholar 

  33. Youssef, M., Keshavan, S., Dante, S.: Induced inhomogeneity in graphene work function due to graphene - TiO 2 /Ag/glass substrate interaction. Thin Solid Films. 628, 43–49 (2017)

    Article  Google Scholar 

  34. Chae, S.H., Jin, Y., Kirn, T.S., Chung, D.S., Na, H., Nam, H., Kim, H., Perello, D.J., Jeong, H.Y., Ly, T.H.: Lee.: Oxidation Effect in Octahedral Hafnium Disulfide Thin Film. Acs Nano. 10, 1309–1316 (2016)

    Article  CAS  PubMed  Google Scholar 

  35. Nie, X.R., Sun, B.Q., Zhu, H., Zhang, M., Zhao, D.H., Chen, L., Sun, Q.Q., Zhang, D.W.: Impact of metal contacts on the performance of Multilayer HfS Field-Effect transistors. ACS Appl. Mater. Interfaces. 9, 26996–27003 (2017)

    Article  CAS  PubMed  Google Scholar 

  36. Gao, C.F., Lee, M.P., Li, M.J., Lee, K.C., Yang, F.S., Lin, C.Y., Watanabe, K., Taniguchi, T., Chiu, P.W., Lien, C.H., Wu, W.W., Lin, S.P., Li, W.W., Lin, Y.F.: Chu.: Mimic Drug Dosage Modulation for Neuroplasticity based on charge-trap layered Electronics. Adv. Funct. Mater. 31, 2005185 (2021)

    Google Scholar 

  37. Kanazawa, T., Amemiya, T., Upadhyaya, V., Ishikawa, A., Tsuruta, K., Tanaka, T., Miyamoto, Y.: Performance improvement of HfS transistors by Atomic Layer Deposition of HfO. Ieee T Nanotechnol. 16, 582–587 (2017)

    Article  CAS  Google Scholar 

  38. Xu, K., Huang, Y., Chen, B., Xia, Y., Lei, W., Wang, Z.X., Wang, Q.S., Wang, F., Yin, L.: Toward high-performance top-gate ultrathin HfS Field-Effect transistors by Interface Engineering. Small. 12, 3106–3111 (2016)

    Article  CAS  PubMed  Google Scholar 

  39. Das, S., Chen, H.Y., Penumatcha, A.V.: High performance Multilayer MoS transistors with Scandium contacts. Nano Lett. 13, 100–105 (2013)

    Article  CAS  PubMed  Google Scholar 

  40. Su, B.W., Zhang, X.L., Xin, W., Guo, H.W., Zhang, Y.Z., Liu, Z.B., Tian, J.G.: Laser-assisted two dimensional material electronic and optoelectronic devices. J. Mater. Chem. C. 9, 2599–2619 (2021)

    Article  CAS  Google Scholar 

  41. Wang, I.T., Chang, C.C., Chiu, L.W., Chou, T.Y.: Hou.: 3D Ta/TaO/TiO/Ti synaptic array and linearity tuning of weight update for hardware neural network applications. Nanotechnology. 27, 365204 (2016)

    Article  PubMed  Google Scholar 

  42. Kumar, S., Kumbhar, D.D., Park, J.H., Kamat, R.K., Dongale, T.D.: Mukherjee.: YO-Based crossbar array for Analog and Neuromorphic Computation. Ieee T Electron. Dev. 70, 473–477 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grants funded by the Government of the Republic of Korea (2021R1C1C1012209 and RS-2023-00275300) and by the Korea Institute of Ceramic Engineering and Technology (KPP22002). This results was also supported by “Regional Innovation Strategy (RIS)” through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-003). Following are results of a study on the “Leaders in INdustry-university Cooperation 3.0” Project, supported by the Ministry of Education and National Research Foundation of Korea.

Author information

Authors and Affiliations

Authors

Contributions

M. J. K. and N. V. B. prepared the materials for most of the experimental measurements and analyzed the results. M. J. K., J.Y.C., and J. H. P. conceived and designed the study. S. C., S. B. S., S. H. R., and Y. J. J. assisted with material characterization and W. H. N conducted the XPS analysis. M. J. K. fabricated the devices and analyzed the results. M. J. K., N. V. B., J. Y. C., and J. H. P. wrote the manuscript. All the authors discussed the results and commented on the manuscript. All authors revised the manuscript. J. H. P. supervised the study.

Corresponding authors

Correspondence to Jung Young Cho or Jun Hong Park.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, M.J., Binh, N.V., Cho, Sy. et al. Optoelectronic Synapse Behaviors of HfS2 Grown via Molten Salt Flux Method. Electron. Mater. Lett. (2024). https://doi.org/10.1007/s13391-024-00494-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13391-024-00494-z

Keywords

Navigation