Skip to main content
Log in

Formation and Control of Hexagonal Pyramid Structures from GaN -Based Pillar-Shaped Structures Using Focused Ion-Beam Process

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The formation of controllable 3D structures on the surface of layered optoelectronic devices using GaN-based semiconductors is important for improving the external quantum efficiency by enhancing the light-emitting efficiency. In this study, as-grown short hexagonal pillar structures on GaN-based semiconductors were transformed into a hexagonal pyramid shape during a focused ion-beam process. After forming the hexagonal pyramid shape, it was found that the size of the hexagonal pyramid can be adjusted by varying the sputtering time while preserving the pyramid shape. The transformation of the as-grown pillar structures to 3D hexagonal pyramids was demonstrated by analyzing the morphological evolution with the sputtering time by simulating the FIB process and calculating the effective ion bombardment area during sputtering.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Matsuoka, T., Okamoto, H., Nakao, M., et al.: Optical bandgap energy of wurtzite InN. Appl. Phys. Lett. 81, 1246–1248 (2002). https://doi.org/10.1063/1.1499753

    Article  CAS  Google Scholar 

  2. Ki, K.H., Kwak, N.W., Lee, S.H.: Fabrication and properties of AlN Film on GaN substrate by using remote plasma atomic layer deposition method. Electron. Mater. Lett. 5, 83–86 (2009). https://doi.org/10.3365/eml.2009.06.083

    Article  CAS  Google Scholar 

  3. Cho, J., Yoon, E., Park, Y., et al.: Characteristics of blue and ultraviolet light-emitting diodes with current density and temperature. Electron. Mater. Lett. 6, 51–53 (2010). https://doi.org/10.3365/eml.2010.06.051

    Article  CAS  Google Scholar 

  4. Lee, T.-X., Gao, K.-F., Chien, W.-T., Sun, C.-C.: Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate. Opt. Express. 15, 6670 (2007). https://doi.org/10.1364/oe.15.006670

    Article  CAS  Google Scholar 

  5. Hirayama, H., Yatabe, T., Noguchi, N., et al.: 231–261 nm AlGaN deep-ultraviolet light-emitting diodes fabricated on AlN multilayer buffers grown by ammonia pulse-flow method on sapphire. Appl. Phys. Lett. 91, 1–4 (2007). https://doi.org/10.1063/1.2770662

    Article  CAS  Google Scholar 

  6. Hirayama, H., Noguchi, N., Yatabe, T., Kamata, N.: 227 nm AlGaN light-emitting diode with 0.15 mW output power realized using a thin quantum well and AIN buffer with reduced threading dislocation density. Appl. Phys. Express. 1, 0511011–0511013 (2008). https://doi.org/10.1143/APEX.1.051101

    Article  CAS  Google Scholar 

  7. Hirayama, H., Fujikawa, S., Noguchi, N., et al.: 222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. Phys. Status Solidi Appl. Mater. Sci. 206, 1176–1182 (2009). https://doi.org/10.1002/pssa.200880961

    Article  CAS  Google Scholar 

  8. Martyniuk, M., Parish, G., Marchand, H., et al.: Nanoindentation of laterally overgrown epitaxial gallium nitride. Electron. Mater. Lett. 8, 111–115 (2012). https://doi.org/10.1007/s13391-012-1074-6

    Article  CAS  Google Scholar 

  9. Pan, J.-W., Wang, C.-S.: Light extraction efficiency of GaN-based LED with pyramid texture by using ray path analysis. Opt. Express. 20, A630 (2012). https://doi.org/10.1364/oe.20.00a630

    Article  CAS  Google Scholar 

  10. Jung, S.Y., Seong, T.Y.: Improved light output power of GaN-based flip-chip light-emitting diode through SiO2 cones. Electron. Mater. Lett. 8, 549–552 (2012). https://doi.org/10.1007/s13391-012-2025-y

    Article  CAS  Google Scholar 

  11. Schnitzer, I., Yablonovitch, E., Caneau, C., et al.: 30% external Quantum Efficiency from Surface Textured, Thin-Film light-emitting diodes. Appl. Phys. Lett. 63, 2174–2176 (1993). https://doi.org/10.1063/1.110575

    Article  CAS  Google Scholar 

  12. Windisch, R., Rooman, C., Meinlschmidt, S., et al.: Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes. Appl. Phys. Lett. 79, 2315–2317 (2001). https://doi.org/10.1063/1.1397758

    Article  CAS  Google Scholar 

  13. Huh, C., Lee, K.S., Kang, E.J., Park, S.J.: Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface. J. Appl. Phys. 93, 9383–9385 (2003). https://doi.org/10.1063/1.1571962

    Article  CAS  Google Scholar 

  14. Cheng, Y.W., Lu, T.C., Ke, M.Y., et al.: Application of nanosphere lithography to the fabrication of nanorod LEDs and to the performance enhancement of conventional LEDs. Opt. InfoBase Conf. Pap. 15, 1242–1249 (2009). https://doi.org/10.1364/acp.2009.tun1

    Article  Google Scholar 

  15. Huang, Y.T., Yeh, P.S., Huang, Y.H., et al.: High-performance InGaN p-i-n photodetectors using LED structure and surface texturing. IEEE Photonics Technol Lett. 28, 605–608 (2016). https://doi.org/10.1109/LPT.2015.2500272

    Article  CAS  Google Scholar 

  16. Zhuang, D., Edgar, J.H.: Wet etching of GaN, AlN, and SiC: A review. Mater. Sci. Eng. R Reports. 48, 1–46 (2005). https://doi.org/10.1016/j.mser.2004.11.002

    Article  CAS  Google Scholar 

  17. Chen, W., Lin, J., Hu, G., et al.: GaN nanowire fabricated by selective wet-etching of GaN micro truncated-pyramid. J. Cryst. Growth. 426, 168–172 (2015). https://doi.org/10.1016/j.jcrysgro.2015.06.007

    Article  CAS  Google Scholar 

  18. Liu, Z., Wang, Y., Xia, X., et al.: Fabrication of GaN hexagonal cones by inductively coupled plasma reactive ion etching. J. Vac Sci. Technol. B Nanotechnol Microelectron. Mater. Process. Meas. Phenom. 34, 041226 (2016). https://doi.org/10.1116/1.4954986

    Article  CAS  Google Scholar 

  19. Lai, Y.Y., Hsu, S.C., Chang, H.S., et al.: The study of wet etching on GaN surface by potassium hydroxide solution. Res. Chem. Intermed. 43, 3563–3572 (2017). https://doi.org/10.1007/s11164-016-2430-1

    Article  CAS  Google Scholar 

  20. Li, J., Liu, Z.: Focused-ion-beam-based nano-kirigami: From art to photonics. Nanophotonics. 7, 1637–1650 (2018). https://doi.org/10.1515/nanoph-2018-0117

    Article  CAS  Google Scholar 

  21. Kuball, M., Morrissey, F.H., Benyoucef, M., et al.: Nano-fabrication of GaN pillars using focused ion beam etching. Phys. Status Solidi Appl. Res. 176, 355–358 (1999). https://doi.org/10.1002/(SICI)1521-396X(199911)176:1<355::AID-PSSA355>3.0.CO;2-I

    Article  CAS  Google Scholar 

  22. Dai, T., Kang, X., Zhang, B., et al.: Study and formation of 2D microstructures of sapphire by focused ion beam milling. Microelectron. Eng. 85, 640–645 (2008). https://doi.org/10.1016/j.mee.2007.11.009

    Article  CAS  Google Scholar 

  23. Cho, H.K., Lee, J.Y., Yang, G.M., Kim, C.S.: Formation mechanism of V defects in the InGaN/GaN multiple quantum wells grown on GaN layers with low threading dislocation density. Appl. Phys. Lett. 79, 215–217 (2001). https://doi.org/10.1063/1.1384906

    Article  CAS  Google Scholar 

  24. Tong, G., Jia, W., Fan, T., et al.: Growth and optical properties of GaN pyramids using in-situ deposited SiNx layer. Mater. Lett. 224, 86–88 (2018). https://doi.org/10.1016/j.matlet.2018.04.089

    Article  CAS  Google Scholar 

  25. Kawamura, T., Akiyama, T., Kitamoto, A., et al.: Absolute surface energies of oxygen-adsorbed GaN surfaces. J. Cryst. Growth. 549, 125868 (2020). https://doi.org/10.1016/j.jcrysgro.2020.125868

    Article  CAS  Google Scholar 

  26. Park, Y., Park, S., Lee, U., Choi, S.H.: Nano-Scale lateral milling with focused Ion Beam for Ultra-Smooth Optical device surface. Recent Pat. Sp Technol. 2, 51–58 (2010). https://doi.org/10.2174/1877611601002010051

    Article  Google Scholar 

  27. Li, P., Chen, S., Dai, H., et al.: Recent advances in focused ion beam nanofabrication for nanostructures and devices: Fundamentals and applications. Nanoscale. 13, 1529–1565 (2021). https://doi.org/10.1039/d0nr07539f

    Article  CAS  Google Scholar 

  28. Chen, X., Ren, Z., Zhu, Y., et al.: Formation mechanism and compensation methods of profile error in focused ion beam milling of three-dimensional optical microstructures. SN Appl. Sci. 2, 1–16 (2020). https://doi.org/10.1007/s42452-020-2456-2

    Article  Google Scholar 

  29. Ziegler, J.F., Ziegler, M.D., Biersack, J.P.: SRIM–The stopping and range of ions in matter. Nucl. Instruments Methods Phys. Res. Sect. B. 268, 1818–1823 (2010)

    Article  CAS  Google Scholar 

  30. Lin, X., Fang, C., Liu, H., et al.: Characterization and simulation of sputtering etched profile by focused gallium ion beam on GaN substrate. Mater. Des. 216, 110563 (2022). https://doi.org/10.1016/j.matdes.2022.110563

    Article  CAS  Google Scholar 

  31. Zgirski, M., Riikonen, K.P., Tuboltsev, V., et al.: Ion beam shaping and downsizing of nanostructures. Nanotechnology. 19 (2008). https://doi.org/10.1088/0957-4484/19/05/055301

  32. Despiau-Pujo, E., Chabert, P.: Low energy ar + bombardment of GaN surfaces: A statistical study of ion reflection and sputtering. J. Vac Sci. Technol. A Vacuum Surfaces Film. 28, 1263–1268 (2010). https://doi.org/10.1116/1.3480344

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2021R1I1A3052174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Heon Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to infuence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruh, W.J., Choi, H.J., Kim, J.H. et al. Formation and Control of Hexagonal Pyramid Structures from GaN -Based Pillar-Shaped Structures Using Focused Ion-Beam Process. Electron. Mater. Lett. 20, 49–55 (2024). https://doi.org/10.1007/s13391-023-00435-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-023-00435-2

Keywords

Navigation