Skip to main content
Log in

Preparation and Photoelectric Properties of Silver Nanowire/ZnO Thin Film Ultraviolet Detector

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Ultraviolet (UV) detectors have important applications in many fields. ZnO is an excellent semiconductor material for the preparation of UV detectors because of its large direct gap in forbidden bandwidth, its intrinsic response band in the UV region, and its high exciton binding energy. In this paper, high-performance ZnO thin films with the optically advantageous nonpolar structure were prepared by using an atomic layer deposition, and the dominant crystal plane gradually changes from the amorphous phase to the (100) crystal plane. The conventional photoconductor structure ZnO UV detector was enhanced by the surface plasmon exciton effect of Ag nanostructure. When the operating voltage is 5 V and the response light is 350 nm, there is a maximum optical responsiveness of up to 131 A/W. The UV/visible rejection ratio can reach 1824 times. When the ZnO thin film deposition thickness is 400 deposition cycles and about 72 nm, the ZnO thin film UV detector obtains the highest responsiveness (5 V, 365 nm) of 365 A/W. Comparing the photovoltaic performance of the ZnO thin-film detector with the enhanced ZnO thin-film detector and its optimal response wavelength, it is found that the enhanced ZnO thin-film detector increased the photoresponse value by about 100 times. The optimal response wavelength in the UV region is blue-shifted, and the UV-visible rejection ratio and optical response rate are significantly improved.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical limitations.

References

  1. Fattah, M.A., Khan, A., Anabestani, H., et al.: Sensing of ultraviolet light: a transition from conventional to self-powered photodetector. Nanoscale. 13(37), 15526–15551 (2021)

    Article  Google Scholar 

  2. Qi, J., Hu, X., Wang, Z., et al.: A self-powered ultraviolet detector based on a single ZnO microwire/p-Si film with double heterojunctions. Nanoscale. 6(11), 6025–6029 (2014)

    Article  CAS  Google Scholar 

  3. Sosna-Gbska, A., Sibiński, M., Szczecińska, N., et al.: UV–Visible silicon detectors with zinc oxide nanoparticles acting as wavelength shifters. Mater.Today Proc. 20. (2019)

  4. Shinde, S.S., Rajpure, K.Y.: Fabrication and performance of N-doped ZnO UV photoconductive detector. J. Alloys Compd. 522(none), 118–122 (2012)

    Article  CAS  Google Scholar 

  5. Zheng, Y., Cheng, L., Yuan, M., et al.: An electrospun nanowire-based triboelectric nanogenerator and its application in a fully self-powered UV detector. Nanoscale. 6(14), 7842–7846 (2014)

    Article  CAS  Google Scholar 

  6. Liu, Y., Cai, H., Wang, F., et al.: Graphene on faceted monocrystalline anatase nanosheet array for ultraviolet detection. Nanoscale 10 (2018). 1039.C7NR08037A.

  7. Marimuthu, G., Saravanakumar, K., Jeyadheepan, K., Mahalakshmi, K.: Chemical growth and study of low intensity sensing ability of nanobranch and nanorod structured SnO2 UV detector. J. Environ. Chem. Eng. 10(1), 106981 (2022)

    Article  CAS  Google Scholar 

  8. Ding, W., Meng, X.: High performance solar-blind UV detector based on β-Ga2O3/GaN nanowires heterojunction. J. Alloys Compd. 866(7), 157564 (2020)

    Google Scholar 

  9. Kalinina, E.V., Kudoyarov, M.F., Nikitina, I.P., et al.: Irradiation with argon ions of Cr/4H-SiC photodetectors. Semiconductors. 56(3), 184–188 (2022)

    Article  Google Scholar 

  10. KUANG, D., CHENG, J., LI X Y, et al.: Dual-ultraviolet wavelength photodetector based on facile method fabrication of ZnO/ZnMgO core/shell nanorod arrays. J. Alloys Compd. 860, 157917 (2021)

    Article  CAS  Google Scholar 

  11. WU, C., WU, F., MA, C., et al.: A general strategy to ultrasensitive Ga2O3 based self-powered solar-blind photodetectors. Mater. Today Phys. 23, 100643 (2022)

    Article  CAS  Google Scholar 

  12. Wang, X., Wang, M., Liao, Y., et al.: Negative electron affinity of the GaN photocathode: a review on the basic theory, structure design, fabrication, and performance characterization. J. Mater. Chem. C. 9(38), 13013–13040 (2021)

    Article  CAS  Google Scholar 

  13. Shan, L.: Economic friend1y ZnO based UV sensors using hydrothenna1 growth a review. Materials. 14(15), 4083 (2021)

    Article  Google Scholar 

  14. Su, L., Zhu, Y., Yong, D., et al.: Wide range bandgap modulation based on ZnO-based alloys and fabrication of solar blind UV detectors with high rejection ratio. ACS Appl. Mater. Interfaces. 6(16), 14152–14158 (2014)

    Article  CAS  Google Scholar 

  15. Zhao, X., Huang, D., He, Y., Physical, A., et al.:334. (2022)

  16. Ara, B., Haa, C., Epa, D., et al.: Controlling the performance of one-dimensional homojunction UV detectors based on ZnO nanoneedles array. Sens. Actuators A: Phys. 331, 112916 (2021)

    Article  Google Scholar 

  17. Wang, D., Shi, P., Xing, R., et al.: Self-powered ZnO/SrCoOx flexible ultraviolet detectors processed at room temperature. Mater. Des. 109616. (2021)

  18. Shaikh, S.K., Inamdar, S.I., Ganbavle, V.V., et al.: Chemical bath deposited ZnO thin film-based UV photoconductive detector. J. Alloys Compd. 664, 242–249 (2016)

    Article  CAS  Google Scholar 

  19. Sunaina, G.A.K., Mehta, S.K.: High performance ZnSe sensitized ZnO heterostructures for photo-detection applications. J. Alloys Compd. 894, 162263 (2022)

    Article  CAS  Google Scholar 

  20. Zhang, Y., Hu, M., Wang, Z.: Enhanced performances of p-Si/n-ZnO self-powered photodetector by interface state modification and pyro-phototronic effect. Nano Energy. 71, 104630 (2020)

    Article  CAS  Google Scholar 

  21. Panigrahi, S., Basak, D.: Core–shell TiO2/ZnO nanorods for efficient ultraviolet photodetection. Nanoscale. 3(5), 2336–2341 (2011)

    Article  CAS  Google Scholar 

  22. Ahmad, M., Zhu, J.: ZnO based advanced functional nanostructures: synthesis, properties and applications. J. Mater. Chem. 21(3), 599–614 (2010)

    Article  Google Scholar 

  23. Wang, X., Liu, K., Chen, X., et al.: Highly wavelength-selective enhancement of responsivity in Ag nanoparticle-modified ZnO UV photodetector. ACS Appl. Mater. Interfaces. 9(6), 5574–5579 (2017)

    Article  CAS  Google Scholar 

  24. Kelly, K.L., Coronado, E., Zhao, L.L., et al.: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B. 107(3), 668–677 (2003)

    Article  CAS  Google Scholar 

  25. Wang, S., Yu, Y., Zuo, Y., et al.: Synthesis and photocatalysis of hierarchical heteroassemblies of ZnO branched nanorod arrays on Ag core nanowires. Nanoscale. 4(19), 5895–5901 (2012)

    Article  CAS  Google Scholar 

  26. Li, B., Ye, S., Stewart, I.E., et al.: Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%. Nano Lett. 15(10), 6722–6726 (2015)

    Article  CAS  Google Scholar 

  27. Sharma, R.K., Yadav, S., Dutta, S., et al.: Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chem. Soc. Rev. 50(20), 11293–11380 (2021)

    Article  CAS  Google Scholar 

  28. Lai, F.I., Lai, F.I., Yang, J.F., et al.: Location-optoelectronic property correlation in ZnO:Al Thin Film by RF magnetron sputtering and its photovoltaic application. Materials. 14(21), 6313 (2021)

    Article  CAS  Google Scholar 

  29. Mohamed, M.M., Ghanem, M.A., Reda, S.M., et al.: Photovoltaic and capacitance performance of low-resistance ZnO nanorods incorporated into carbon nanotube-graphene oxide nanocomposites. Electrochim. Acta. 307, 430–441 (2019)

    Article  CAS  Google Scholar 

  30. Sheu, J.K., Lee, M.L., Lin, Y.C.: Surface plasmon-enhanced GaN metal–insulator–semiconductor ultraviolet detectors with Ag nanoislands embedded in a silicon dioxide gate layer. IEEE J. Sel. Top. Quantum Electron. 20(6), 137–141 (2014)

    Article  Google Scholar 

  31. Hou, X., Fang, Y.: Surface-enhanced Raman scattering of single-walled carbon nanotubes on modified silver electrode. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 69(4), 1140–1145 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Heilongjiang Provincial Natural Science Foundation of China (YQ2022E024), the National Key Research and Development Program of China (2020YFE0205300), the Fundamental Research Funds for the Central Universities (AUGA5710051221).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng He or Shuye Y. Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xiao, W., Zhou, H. et al. Preparation and Photoelectric Properties of Silver Nanowire/ZnO Thin Film Ultraviolet Detector. Electron. Mater. Lett. 19, 415–423 (2023). https://doi.org/10.1007/s13391-023-00421-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-023-00421-8

Keywords

Navigation