Skip to main content
Log in

3D Sacrificial Microchannels by Scaffold Removal Process for Electrical Characterization of Electrolytes

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

3D printing technology is promising for the fabrications of microfluidic devices. For both research and educational purposes, the efficient generations of highly organized microchannels are on demand. Here, we suggest a method to create 3D helix microchannels by using a 3D printed scaffold as sacrificial material for an acetone-treated removal process. We employed a desktop fused deposition modeling (FDM) 3D printer which is friendly used for cheap-and-easy processes. 3D scaffold structures were made of acrylonitrile/butadiene/styrene (ABS) plastic via the FDM 3D printer. To increase the stability of the fabrications of polydimethlysiloxane (PDMS) fluidic chambers, we developed a double PDMS casting process. As a frame layer, the first PDMS was casted in the space between a vertically standing 15 ml conical tube and a vacant 50 ml conical tube. Inside the PDMS frame layer, the second PDMS mixture solution was poured, followed by immersing the 3D printed scaffold. After curing, the PDMS block was shaped with a cutter, thus leaving both ends of the 3D scaffold open. For the removal and rinsing process, the PDMS block with the 3D scaffold were dipped in acetone and rinsed by chloroform, sequentially. Since the 3D printed ABS plastic was dissolved in acetone, the 3D scaffold was converted into 3D microchannel. The 3D sacrificial microchannels described here provide an insight for simple fabrications of 3D microfluidic structures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kitson, P.J., Rosnes, M.H., Sans, V., Dragone, V., Cronin, L.: Configurable 3D-printed millifluidic and microfluidic “lab on a chip” reactionware devices. Lab. Chip. 12, 3267 (2012)

    Article  CAS  Google Scholar 

  2. Bhattacharjee, N., Urrios, A., Kanga, S., Folch, A.: The upcoming 3D-printing revolution in microfluidics. Lab. Chip. 16, 1720 (2016)

    Article  CAS  Google Scholar 

  3. Comina, G., Suska, A., Filippini, D.: PDMS lab-on-a-chip fabrication using 3D printed templates. Lab. Chip. 14, 424 (2014)

    Article  CAS  Google Scholar 

  4. Waheed, S., Cabot, J.M., Macdonald, N.P., Lewis, T., Guijt, R.M., Paull, B., Breadmore, M.C.: 3D printed microfluidic devices: enablers and barriers. Lab. Chip. 16, 1993 (2016)

    Article  CAS  Google Scholar 

  5. Nam, S.W., Chae, J.P., Kwon, Y.H., Son, M.Y., Bae, J.S., Park, M.J.: Xenopus chip for single-egg trapping, in vitro fertilization, development, and tadpole escape. Biochem. Biophys. Res. Commun. 569, 29 (2021)

    Article  CAS  Google Scholar 

  6. Nguyen, M.T.H., Kim, S.Y., Jeong, T.H., Kim, J.H., Cho, H.S., Ha, T.H., Ahn, S.J., Kim, Y.H.: Preparation and stability of PEGDA/GO conductive materials by DLP 3D printing. Electron. Mater. Lett. 18, 275 (2022)

    Article  CAS  Google Scholar 

  7. Nam, S.W., Lee, M.H., Lee, S.H., Lee, D.J., Rossnagel, S.M., Kim, K.B.: Sub-10-nm nanochannels by self-sealing and self-limiting atomic layer deposition. Nano Lett. 10, 3324 (2010)

    Article  CAS  Google Scholar 

  8. Nam, S.W.: 200 mm wafer-scale fabrication of polydimethylsiloxane fluidic devices for fluorescence imaging of single DNA molecules. MRS Commun. 8, 420 (2018)

    Article  CAS  Google Scholar 

  9. Bai, J.W., Wang, D.Q., Nam, S.W., Peng, H.B., Bruce, R., Gignac, L., Brink, M., Kratschmer, E., Rossnagel, S., Waggonerl, P., Reuter, K., Wang, C., Astier, Y., Balagurusamy, V., Luan, B.Q., Kwark, Y., Joseph, E., Guillorn, M., Polonsky, S., Royyuru, A., Rao, S.P., Stolovitzky, G.: Fabrication of sub-20 nm nanopore arrays in membranes with embedded metal electrodes at wafer scales. Nanoscale 6, 8900 (2014)

    Article  CAS  Google Scholar 

  10. Lee, H.-S., Kim, B.S., Kim, H.M., Wi, J.S., Nam, S.W., Jin, K.B., Arai, Y., Kim, K.B.: Electron beam projection nanopatterning using crystal lattice images obtained from high resolution transmission electron microscopy. Adv. Mater. 19, 4189–4193 (2007)

    Article  CAS  Google Scholar 

  11. Nam, S.-W., Lee, D., Kwon, M.-H., Kang, D., Kim, C., Lee, T.-Y., Heo, S., Park, Y.-W., Lim, K., Lee, H.-S., Wi, J.-S., Yi, K.-W., Khang, Y., Kim, K.-B.: Electric-field-induced mass movement of Ge2Sb2Te5 in bottleneck geometry line structures, Electrochem. Sol. Sta. Lett. 12, H155 (2009)

    Article  CAS  Google Scholar 

  12. Nam, S.-W., Lee, T.-Y., Wi, J.-S., Lee, D., Lee, H.-S., Jin, K.-B., Lee, M.-H., Kim, H.-M., Kim, K.-B.: Electron-beam lithography patterning of Ge2Sb2Te5 nanostructures using hydrogen silsesquioxane and amorphous Si intermediate layer. J. Electrochem. Soc. 154, H844 (2007)

    Article  CAS  Google Scholar 

  13. Baek, S.H., Lee, S., Bae, J.H., Hong, C.W., Park, M.J., Park, H., Baek, M.C., Nam, S.W.: Nanopillar and nanohole fabrication via mixed lithography. Mater. Res. Exp. 7(3), 035008 (2020)

    Article  CAS  Google Scholar 

  14. Hwang, Y.H., Paydar, O.H., Candler, R.N.: 3D printed molds for non-planar PDMS microfluidic channels. Sens. Actuator A Phys. 226, 137 (2015)

    Article  CAS  Google Scholar 

  15. Okoshi, M., Yoshida, T.: Fabrication of silicone rubber-based biochip for disinfection under deep-UV light by ArF excimer laser-induced photodissociation. Electron. Mater. Lett. 17, 68 (2021)

    Article  CAS  Google Scholar 

  16. Song, S.H., Lee, C.K., Kim, T.J., Shin, I.C., Jun, S.C., Jung, H.I.: A rapid and simple fabrication method for 3-dimensional circular microfluidic channel using metal wire removal process. Microfluid Nanofluid 9, 533 (2010)

    Article  CAS  Google Scholar 

  17. Jia, Y.F., Jiang, J.H., Ma, X.D., Li, Y., Huang, H.M., Cai, K.B., Cai, S.X., Wu, Y.P.: PDMS microchannel fabrication technique based on microwire-molding. Chin. Sci. Bull. 53, 3928 (2008)

    CAS  Google Scholar 

  18. Gelber, M.K., Bhargava, R.: Monolithic multilayer microfluidics via sacrificial molding of 3D-printed isomalt. Lab. Chip. 15, 1736 (2015)

    Article  CAS  Google Scholar 

  19. Lee, J., Paek, J., Kim, J.: Sucrose-based fabrication of 3D-networked, cylindrical microfluidic channels for rapid prototyping of lab-on-a-chip and vaso-mimetic devices. Lab. Chip. 12, 2638 (2012)

    Article  CAS  Google Scholar 

  20. Verma, M.K.S., Majumder, A., Ghatak, A.: Embedded template-assisted fabrication of complex microchannels in PDMS and design of a microfluidic adhesive. Langmuir 22, 10291 (2006)

    Article  CAS  Google Scholar 

  21. Fernandez, J.G., Samitier, J., Mills, C.A.: Simultaneous biochemical and topographical patterning on curved surfaces using biocompatible sacrificial molds. J. Biomed. Mater. Res. A 98A, 229 (2011)

    Article  CAS  Google Scholar 

  22. Saggiomo, V., Velders, A.H.: Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic devices. Adv. Sci. 2, 1500125 (2015)

    Article  Google Scholar 

  23. Wang, C., Nam, S.W., Cotte, J.M., Jahnes, C.V., Colgan, E.G., Bruce, R.L., Brink, M., Lofaro, M.F., Patel, J.V., Gignac, L.M., Joseph, E.A., Rao, S.P., Stolovitzky, G., Polonsky, S., Lin, Q.H.: Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules. Nat. Commun. 8, 1–9 (2017)

    Google Scholar 

  24. Kamelian, F.S., Saljoughi, E., Nasirabadi, P.S., Mousavi, S.M.: Modifications and research potentials of acrylonitrile/butadiene/styrene (ABS) membranes: A review. Polym. Compos. 39, 2835–2846 (2018)

    Article  CAS  Google Scholar 

  25. Youtube video “: How to create a 3D sketch spiral or helix in Fusion 360” https://www.youtube.com/watch?v=0hvtfb_oXDw

  26. Gao, H., Kaweesa, D.V., Moore, J., Meisel, N.A.: Investigating the impact of acetone vapor smoothing on the strength and elongation of printed ABS parts. JOM 69, 580 (2017)

    Article  CAS  Google Scholar 

  27. Lee, J.N., Park, C., Whitesides, G.M.: Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75, 6544–6554 (2003)

    Article  CAS  Google Scholar 

  28. Nam, S.W., Rooks, M.J., Kim, K.B., Rossnagel, S.M.: Ionic field effect transistors with sub-10 nm multiple nanopores. Nano Lett. 9, 2044 (2009)

    Article  CAS  Google Scholar 

  29. Turku, I., Kasala, S., Kärki, T.: Characterization of polystyrene wastes as potential extruded feedstock filament for 3D printing. Recycling 3, 57 (2018)

    Article  Google Scholar 

  30. Wu, C.Y., Liao, W.H., Tung, Y.C.: Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems. Lab. Chip. 11, 1740 (2011)

    Article  CAS  Google Scholar 

  31. Hwang, Y., Candler, R.N.: Non-planar PDMS microfluidic channels and actuators: a review. Lab. Chip. 17, 3948 (2017)

    Article  CAS  Google Scholar 

  32. Hassan, M.M., Nam, S.W.: High-performance liquid chromatography for determining a mixture of nonsteroidal anti-inflammatory drugs. Electron. Mater. Lett. 17, 414 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Biomedical Research Institute grant, Kyungpook National University Hospital (2017)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Wook Nam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, DG., Lee, M.J., Heo, J. et al. 3D Sacrificial Microchannels by Scaffold Removal Process for Electrical Characterization of Electrolytes. Electron. Mater. Lett. 19, 342–349 (2023). https://doi.org/10.1007/s13391-022-00402-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00402-3

Keywords

Navigation