Skip to main content
Log in

Achieving High-Performance Si Nanoparticles-Embedded Carbon Fiber Film Anodes in Lithium-Ion Batteries Through Low Current Activation

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Recently, the application of energy storage systems and electric vehicles has increased the importance of lithium-ion batteries (LIBs). However, despite their rising significance, the ability to increase their capacity through power generation of the anode is limited. In this study, we developed an LIB anode material made of silicon (Si) nanoparticle-embedded carbon-nanofiber web film (SNE-CWF) that showed excellent cycling performance when low current activation was performed. Further, we examined the electrochemical properties of SNE-CWF electrodes fabricated through our process as anodes in LIB. The capacity of Si embedded carbon nanofiber showed high specific capacity at 1001–1557 mAh/g at low current density of 20 mA/g than carbon nanofiber (initial capacity of 604 mAh/g). After activation with low current density, the 5 wt% SNE-CWF electrode provided a capacity of 870 mAh/g even when the current was increased to 200 mA/g, and capacity retention at 20th cycle was 92.7%, showing the most stable performance out of all the materials tested. Hence, the stability of performance in LIB was enhanced. The low current electrochemical activation method of SNE-CWF presented through this experiment is expected to suggest a new approach for the manufacture of next-generation electrode material for LIBs .

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dunn, C., Kamath, H., Tarascon, J.-M.: Electrical energy storage for the grid: a battery of choices. Science. 334, 928–935 (2011)

    Article  CAS  Google Scholar 

  2. Blomgren, G.E.: The development and future of lithium ion batteries. J. Electrochem. Soc. 164, A5019–A5025 (2017)

    Article  CAS  Google Scholar 

  3. Armand, B., Tarascon, J.-M.: Building better batteries. Nature. 457, 652–657 (2008)

    Article  Google Scholar 

  4. Cano, Z.P., Banham, D., Ye, S., Hintennach, A., Lu, J., Fowler, M., Chen, Z.: Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy. 3, 279–289 (2018)

    Article  Google Scholar 

  5. Yim, C.-H., Niketic, S., Salem, N., Noboka, O., Abu-Lebdeh, Y.: Towards improving the practical energy density of Li-Ion Batteries: optimization and evaluation of Silicon: graphite. J. Electrochem. Soc. 164, A6294–A6302 (2017)

    Article  CAS  Google Scholar 

  6. Kwade, A., Haselrieder, W., Leithoff, R., Modlinger, A., Dietrich, F., Droeder, K.: Current status and challenges for automotive battery production technologies. Nat. Energy. 3, 290–300 (2018)

    Article  Google Scholar 

  7. Obrovac, M.N., Christensen, L., Dahn, L.E.D.B.: Alloy design for lithium-ion battery anodes. J. Electrochem. Soc. 164, A849–A855 (2007)

    Article  Google Scholar 

  8. Liang, B., Liu, Y., Xu, Y.: Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J. Power Sources. 267, 469–490 (2014)

    Article  CAS  Google Scholar 

  9. Obrovac, M.N., Krause, L.J.: Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103–A108 (2007)

    Article  CAS  Google Scholar 

  10. Chae, S., Ko, M., Kim, K., Ahn, K., Cho, J.: Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries. Joule. 1, 47–60 (2017)

    Article  CAS  Google Scholar 

  11. Ren, W.-F., Zhou, Y., Li, J.-T., Huang, L.: Si anode for next-generation lithium-ion battery. Curr. Opin. Electrochem. 18, 46–54 (2019)

    Article  CAS  Google Scholar 

  12. Jung, C.-H., Kim, K.-H., Hing, S.-H.: Stable silicon anode for lithium-ion batteries through covalent bond formation with a Binder via esterification. ACS Appl. Mater. Interfaces 11, 26753–26763 (2019)

    Article  CAS  Google Scholar 

  13. Zhao, X., Lehto, V.-P.: Challenges and prospects of nanosized silicon anodes in lithium-ion batteries. Nanotechnology. 32, 042002 (2021)

    Article  Google Scholar 

  14. Zhang, C., Wang, F., Han, J., Bai, S., Tan, J., Liu, J., Li, F.: Challenges and recent progress on silicon-based anode materials for next-generation lithium-ion batteries. Small 2, 2100009 (2021)

    Article  CAS  Google Scholar 

  15. Lin, D., Lu, Z., Hsu, P.-C., Lee, R., Liu, N., Zhao, J., Wang, H., Liu, C., Cui, Y.: A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy Environ. Sci. 8, 2371–2376 (2015)

    Article  CAS  Google Scholar 

  16. McDowell, M.T., Lee, S.W., Harris, J.T., Korgel, B.A., Wang, C., Nix, W.D., Cui, Y.: In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 13, 758–764 (2013)

    Article  CAS  Google Scholar 

  17. Liu, X.H., Zhong, L., Huang, S., Mao, S.X., Zhu, T., Huang, J.Y.: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano. 6, 1522–1531 (2012)

    Article  CAS  Google Scholar 

  18. McDowell, M.T., Lee, S.W., Nix, W.D., Cui, Y.: 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25, 4966–4985 (2013)

    Article  CAS  Google Scholar 

  19. Ko, M., Cho, J.: Challenges in accommodating volume change of Si anodes for Li-ion batteries. ChemElectroChem 2, 1645–1651 (2015)

    Article  CAS  Google Scholar 

  20. Ryu, J.H., Kim, J.W., Sung, Y.-E., Oh, S.M.: The failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid-state Lett. 7, A306 (2004)

    Article  CAS  Google Scholar 

  21. Chan, W.H., Choi, G., Ryu, J.W., et al.: Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control. Nat. Nanotech. 7, 310–315 (2012)

    Article  Google Scholar 

  22. Chae, S., Kim, N., Ma, J., Cho, J., Ko, M.: One-to-one comparison of graphite-blended negative electrodes using silicon nanolayer-embedded graphite versus commercial benchmarking materials for high-energy lithium-ion batteries. Adv. Energy Mater. 7, 1700071 (2017)

    Article  Google Scholar 

  23. Datta, M.K., Kumta, P.N.: Silicon, graphite and resin based hard carbon nanocomposite anodes for lithium ion batteries. J. Power Sources. 165, 368–378 (2007)

    Article  CAS  Google Scholar 

  24. Jo, Y.N., Kim, Y., Kim, J.S., Song, J.H., Kim, K.J., Kwag, C.Y., Lee, D.J., Park, C.W., Kim, Y.J.: Si–graphite composites as anode materials for lithium secondary batteries. J. Power Sources. 195, 6031–6036 (2010)

    Article  CAS  Google Scholar 

  25. Suh, S.-S., Yoon, W.Y., Kim, D.-H., Kwon, S.-U., Kim, J.-H., Kim, Y.-U., Jeong, C.-U., Chan, Y.-Y., Kang, S.-H., Lee, J.-K.: Electrochemical behavior of SiOxanodes with variation oxygenratio for Li-ion batteries. Electrochim. Acta. 148, 111–117 (2014)

    Article  CAS  Google Scholar 

  26. Su, M., Liu, S., Tao, L., Tang, Y., Dou, A., Lv, J., Liu, Y.: Silicon@graphene composite prepared by spray–drying method as anode for lithium ion batteries. J. Electroanal. Chem. 844, 86–90 (2019)

    Article  CAS  Google Scholar 

  27. Jin, Y., Zhu, B., Lu, Z., Liu, N., Zhu, J.: Challenges and recent progress in the development of Si anodes for lithium-ion battery. Adv. Energy Mater. 7, 1700715 (2017)

    Article  Google Scholar 

  28. Jeong, G., Kim, J.-G., Park, M.-S., Seo, M., Hwang, S.M., Kim, Y.-U., Kim, Y.-J., Kim, J.H., Dou, S.W.: Core-shell structured silicon nanoparticles@TiO2-x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode. ACS Nano 8, 2977–2985 (2014)

    Article  CAS  Google Scholar 

  29. Si, G., Hanai, K., Ichukawa, T., Hirano, A., Imanishi, N., Takeda, Y., Yamamoto, O.: A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries. J. Power Sources. 195, 1720–1725 (2010)

    Article  CAS  Google Scholar 

  30. Lee, D.K., Ahn, C.W., Jeon, H.-J.: Web-structured graphitic carbon fiber felt as an interlayer for rechargeable lithium-sulfur batteries with highly improved cycling performance. J. Power Sources. 360, 559–568 (2017)

    Article  CAS  Google Scholar 

  31. Lee, D.K., Ahn, C.W., Jeon, H.-J.: Web of carbon fibers coated with 3D snowflake-shaped Ni3S2/Ni produced by electroless ni plating: a binder-free cathode electrode for lithium batteries. Microelectron. Eng. 166, 1–4 (2016)

    Article  CAS  Google Scholar 

  32. Musiol, P., Szatkowski, P., Gubernat, M., Weselucha-Birczynska, A., Blazewicz, S.: Comparative study of the structure and microstructure of PAN-based nano- and micro-carbon fibers. Ceram. Int. 42, 11603–11610 (2016)

    Article  CAS  Google Scholar 

  33. Obrovac, M.N., Christensen, L.: Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 7, A93 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF-2021R1F1A1053586). This paper was supported by Korea Institute for Advancement of Technology (KIAT) Grant funded by the Korea Government (MOTIE) (P0002007). This research was also supported by the Korea Evaluation Institute of Industrial Technology (KEIT) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20015536).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hwan-Jin Jeon or Ji Heon Ryu.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.M., Kim, H., Jeon, HJ. et al. Achieving High-Performance Si Nanoparticles-Embedded Carbon Fiber Film Anodes in Lithium-Ion Batteries Through Low Current Activation. Electron. Mater. Lett. 19, 251–259 (2023). https://doi.org/10.1007/s13391-022-00392-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00392-2

Keywords

Navigation