Skip to main content
Log in

Novel YBO3 Phosphors Doped with Ln3+ (Ce3+, Tb3+, Eu3+) Ions with Tunable Color for WLED Applications

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this work, YBO3 phosphors doped with Ln3+ (Ce3+, Tb3+, Eu3+) ions were synthesized by a facile hydrothermal method using high temperature and high pressure environment. Structural property characterizations show all the samples have a similar spherical morphology and a hexagonal crystal structure with good crystallinity. PL spectra and CIE calculation show that the color of phosphors can be easily controlled by the species and atomic content of Ln3+ ions. White color is achieved as the atomic contents of Ln3+ ions are: 1% Ce3+, 3% Tb3+, and 0.5% Eu3+, respectively. Furthermore, LED devices based on ultraviolet chip were fabricated and characterized, and the results clearly demonstrated the tunable color of as-prepared phosphors. At the same time, co-doping Ce3+, Tb3+, and Eu3+ ions can well adjust the fluorescence lifetime of the three rare earth ions through energy transfer. These results show that the phosphor has broad application prospects in the field of display lighting such as LED.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee, H., Kim, H.J.: Nanoimprinting of perovskite layer for light-harvesting effect in photovoltaic devices. Electron. Mater. Lett. (2022). https://doi.org/10.1007/s13391-022-00348-6

    Article  Google Scholar 

  2. Huang, X.: Red phosphor converts white LEDs. Nat. Photonics 8(10), 748–749 (2014). https://doi.org/10.1038/nphoton.2014.221

    Article  CAS  Google Scholar 

  3. Iwan, S., Zhao, J., Tan, S., Bambang, S., Hikam, M., Fan, H., Sun, X.: Ion-dependent electroluminescence from trivalent rare-earth doped n-ZnO/p-Si heterostructured light-emitting diodes. Mater. Sci. Semicond. Process. 30, 263–266 (2015). https://doi.org/10.1016/j.mssp.2014.09.048

    Article  CAS  Google Scholar 

  4. Hossain, M.K., Khan, M.I., El-Denglawey, A.: A review on biomedical applications, prospects, and challenges of rare earth oxides. Appl. Mater. Today 24, 101104 (2021). https://doi.org/10.1016/j.apmt.2021.101104

    Article  Google Scholar 

  5. Dai, W.B., Lei, Y.F., Zhou, J., Xu, M., Chu, L.L., Li, L., Zhao, P., Zhang, Z.H.: Near-infrared quantum-cutting and long-persistent phosphor Ca3Ga2Ge3O12:Pr3+, Yb3+ for application in vivo bioimaging and dye-sensitized solar cells. J. Alloy. Compd. 726, 230–239 (2017). https://doi.org/10.1016/j.jallcom.2017.08.002

    Article  CAS  Google Scholar 

  6. Huang, X.: Giant enhancement of upconversion emission in (NaYF4:Nd3+/Yb3+/Ho3+)/(NaYF4:Nd3+/Yb3+) core/shell nanoparticles excited at 808 nm. Opt. Lett. 40, 3599–3602 (2015). https://doi.org/10.1364/ol.40.003

    Article  CAS  Google Scholar 

  7. Paderni, D., Giorgi, L., Fusi, V., Formica, M., Ambrosi, G., Micheloni, M.: Chemical sensors for rare earth metal ions. Coord. Chem. Rev. 429, 213639 (2021). https://doi.org/10.1016/j.ccr.2020.213639

    Article  CAS  Google Scholar 

  8. Kaur, R., Rakesh, R.B., Mhatre, S.G., Bhatia, V., Kumar, D., Singh, H., Singh, S.P., Kumar, A.: Physical, optical, structural and thermoluminescence behaviour of borosilicate glasses doped with trivalent neodymium ions. Opt. Mater. 117, 111109 (2021). https://doi.org/10.1016/j.optmat.2021.111109

    Article  CAS  Google Scholar 

  9. Du, P., Luo, L., Park, H.K., Yu, J.: Citric-assisted sol-gel based Er3+/Yb3+-codoped Na0.5Gd0.5MoO4: a novel highly-efficient infrared-to-visible upconversion material for optical temperature sensors and optical heaters. Chem. Eng. J. 306, 840–848 (2016). https://doi.org/10.1016/j.cej.2016.08.007

    Article  CAS  Google Scholar 

  10. Yadav, D., Kripal, R., Gnutek, P., Rudowicz, C.: Systematization of crystal field parameters for trivalent rare-earth (RE3+) ions at orthorhombic sites in selected laser materials-standardization approach. J. Phys. Chem. Solids 74, 751–758 (2013). https://doi.org/10.1016/j.jpcs.2013.01.016

    Article  CAS  Google Scholar 

  11. Lee, J.H., Heo, M.H., Kim, S.J., Nahm, S., Park, K.: Photoluminescence properties of (Y1–x−yMxEuy)BO3 (M=Al, Zn, and La) phosphors prepared by ultrasonic spray pyrolysis under VUV excitation. J. Alloy. Compd. 473, 272–274 (2009). https://doi.org/10.1016/j.jallcom.2008.05.09

    Article  CAS  Google Scholar 

  12. Chen, L., Luo, A., Zhang, Y., Chen, X., Liu, H., Jiang, Y., Chen, S., Chen, K., Kuo, H., Tao, Y., Zhang, G.: The site-selective excitation and the dynamical electron–lattice interaction on the luminescence of YBO3:Sb3+. J. Solid State Chem. 201, 229–236 (2013). https://doi.org/10.1016/j.jssc.2013.02.034

    Article  CAS  Google Scholar 

  13. Li, C., Du, X., Shi, Y., Huang, J., Jin, L., Wang, Z., Zhang, X.: Carbon nanodots enhance and optimize the photoluminescence of micro-spherical YBO3:Eu3+ phosphors. J. Alloy. Compd. 783, 813–819 (2019). https://doi.org/10.1016/j.jallcom.2018.12.383

    Article  CAS  Google Scholar 

  14. Zhang, X., Marathe, A., Sohal, S., Holtz, M., Davis, M., Hope-Weeks, L.J., Chaudhuri, J.: Synthesis and photoluminescence properties of hierarchical architectures of YBO3:Eu3+. J. Mater. Chem. 22(13), 6485–6490 (2012). https://doi.org/10.1039/c2jm302

    Article  CAS  Google Scholar 

  15. Chen, D., Wang, Z., Zhou, Y., Huang, P., Ji, Z.: Tb3+/Eu3+:YF3 nanophase embedded glass ceramics: structural characterization, tunable luminescence and temperature sensing behavior. J. Alloys Compd. 646, 339–344 (2015). https://doi.org/10.1016/j.jallcom.2015.06.030

    Article  CAS  Google Scholar 

  16. Wang, X., Bu, Y., Yan, X., Cai, P., Wang, J., Qin, L., Vu, T., Seo, H.J.: Detecting the origin of luminescence in Er3+-doped hexagonal Na1.5Gd1.5F6 phosphors. Opt. Lett. 41, 5314–5317 (2016). https://doi.org/10.1364/ol.41.005314

    Article  CAS  Google Scholar 

  17. Bagchi, D., Maji, T.K., Sardar, S., Lemmens, P., Bhattacharya, C., Karmakar, D., Pal, S.K.: Sensitized ZnO nanorod assemblies to detect heavy metal contaminated phytomedicines: spectroscopic and simulation studies. Phys. Chem. Chem. Phys. 19, 2503–2513 (2017). https://doi.org/10.1039/c6cp08016b

    Article  CAS  Google Scholar 

  18. Wang, X., Wang, Y., Bu, Y., Yan, X., Wang, J., Cai, P., Vu, T., Seo, H.J.: Influence of doping and excitation powers on optical thermometry in Yb3+-Er3+ doped CaWO4. Sci Rep. 7, 1–9 (2017). https://doi.org/10.1038/srep43383

    Article  Google Scholar 

  19. Rivera-López, F., Torres, M.E., Gil de Cos, G.: Upconversion and cooperative luminescence in YBO3:Yb3+-Er3+. Mater. Today Commun. 27, 102434 (2021). https://doi.org/10.1016/j.mtcomm.2021.102434

    Article  CAS  Google Scholar 

  20. Wang, L., Zhang, W., Li, Q., Wu, G., Zhang, Y., Jin, D.: The effect of M (Li+, K+, Mg2+, Al3+) ions on the quantum efficiency of YBO3:Eu3+ phosphors. Optik 207, 163787 (2020). https://doi.org/10.1016/j.ijleo.2019.163787

    Article  CAS  Google Scholar 

  21. Nohara, A., Takeshita, S., Iso, Y., Isobe, T.: Solvothermal synthesis of YBO3:Ce3+, Tb3+ nanophosphor: influence of B/(Y+Ce+Tb) ratio on particle size and photoluminescence intensity. J. Mater. Sci. 51, 3311–3317 (2016). https://doi.org/10.1007/s10853-015-9645-1

    Article  CAS  Google Scholar 

  22. Li, M., You, F., Liang, C., He, Z.: Ratiometric thermal sensing based on dual emission of YBO3:Ce3+, Tb3+. J. Alloy. Compd. 833, 155011 (2020). https://doi.org/10.1016/j.jallcom.2020.155011

    Article  CAS  Google Scholar 

  23. Li, Z., Hua, Y., Ou, G.: Synthesis red-emitting Ca2LaNbO6:xSm3+ phosphors for good color-rendering-index white-LED devices. Optik 233, 166595 (2021). https://doi.org/10.1016/j.ijleo.2021.166595

    Article  CAS  Google Scholar 

  24. Huang, X., Li, B., Du, P., Guo, H., Cao, R., Yu, J.S., Wang, K., Sun, X.W.: Realizing highly efficient multicolor tunable emissions from Tb3+ and Eu3+ co-doped CaGd2(WO4)4 phosphors via energy transfer by single ultraviolet excitation for lighting and display applications. Dyes Pigment. 151, 202–210 (2018). https://doi.org/10.1016/j.dyepig.2017.12.067

    Article  CAS  Google Scholar 

  25. Yum, J.H., Seo, S.Y., Lee, S., Sung, Y.E.: Y3Al5O12:Ce0.05 phosphor coatings on gallium nitride for white light emitting diodes. J. Electrochem. Soc. 150, H47–H52 (2003). https://doi.org/10.1149/1.153520

    Article  CAS  Google Scholar 

  26. Zhao, W., Wen, H., Yang, X., Qiao, X.: Preparation and luminescent properties of KBaYSi2O7:RE3+ (RE=Dy, Eu) single-host phosphors for white LED. Mater. Lett. 261, 127104 (2020). https://doi.org/10.1016/j.matlet.2019.127104

    Article  CAS  Google Scholar 

  27. Pan, G., Song, H., Yu, L., Liu, Z., Bai, X., Lei, Y., Fan, L.: Luminescent properties of YBO3:Eu3+ nanosheets and microstructural materials consisting of nanounits. J. Lumines. 122–123, 882–885 (2007). https://doi.org/10.1016/j.jlumin.2006.01.316

    Article  CAS  Google Scholar 

  28. Zhang, W., Liu, S., Hu, Z., Liang, Y., Feng, Z., Sheng, X.: Preparation of YBO3:Dy3+, Bi3+ phosphors and enhanced photoluminescence. Mater. Sci. Eng. B 187, 108–112 (2014). https://doi.org/10.1016/j.mseb.2014.05.006

    Article  CAS  Google Scholar 

  29. Park, S.J., Je, B.S., Jang, J.W., Oh, M.S., Koo, M.S., Yang, S.J., Yang, H.K.: Green and red emitting YBO3:Ln3+ (Ln=Eu, Tb) phosphors for detection of latent fingerprint. J. Alloy. Compd. 789, 367–374 (2019). https://doi.org/10.1016/j.jallcom.2019.03.029

    Article  CAS  Google Scholar 

  30. Kim, T., Kang, S.: Hydrothermal synthesis and photoluminescence properties of nano-crystalline GdBO3:Eu3+ phosphor. Mater. Res. Bull. 40, 1945–1954 (2005). https://doi.org/10.1016/j.materresbull.2005.06.001

    Article  CAS  Google Scholar 

  31. Lee, G.H., Kang, S.: Effect of pH and lattice distortion on the luminescence of (Y, Gd)BO3:Eu3+ phosphor prepared by the coprecipitation method. J. Electrochem. Soc. 153, H105–H109 (2006). https://doi.org/10.1149/1.2185288

    Article  CAS  Google Scholar 

  32. Ogata, H., Takeshita, S., Isobe, T., Sawayama, T., Niikura, S.: Factors for determining photoluminescence properties of YBO3:Ce3+ phosphor prepared by hydrothermal method. Opt. Mater. 33, 1820–1824 (2011). https://doi.org/10.1016/j.optmat.2011.07.003

    Article  CAS  Google Scholar 

  33. Malyi, T., Tsiumra, V., Vistovskyy, V., Mitina, N., Musat, N., Stryhanyuk, H., Kondyr, A., Zaichenko, A., Voloshinovskii, A.: Template synthesis of luminescent oligoperoxide coated YBO3 nanoparticles doped with Ce3+, Tb3+ and Eu3+ ions. Opt. Mater. 124, 112008 (2022). https://doi.org/10.1016/j.optmat.2022.112008

    Article  CAS  Google Scholar 

  34. Huang, J., Chen, N., Wang, X., Du, G., Zhang, A.: Photoluminescence and Ce3+→Tb3+→Eu3+ energy transfer processes of the Ce3+/Tb3+/Eu3+-doped β-NaYF4 phosphors with broadened excitation spectrum. J. Wuhan Univ. Technol. Mat. Sci. Edit. 36, 33–43 (2021). https://doi.org/10.1007/s11595-021-2375-0

    Article  CAS  Google Scholar 

  35. Fischer, S., Baur, F., Jüstel, T.: Suppression of metal-to-metal charge transfer quenching in Ce3+ and Eu3+ comprising garnets by core-shell structure. J. Lumines. 203, 467–472 (2018). https://doi.org/10.1016/j.jlumin.2018.07.001

    Article  CAS  Google Scholar 

  36. Fischer, S., Jüstel, T.: Effective Sensitization of Eu3+ with Ce3+ by suppression of metal-to-metal charge transfer in composite structured TbF3 fluoride particles. J. Lumines. 223, 117232 (2020). https://doi.org/10.1016/j.jlumin.2020.117232

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longcheng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, S., Yu, Z., Tian, Q. et al. Novel YBO3 Phosphors Doped with Ln3+ (Ce3+, Tb3+, Eu3+) Ions with Tunable Color for WLED Applications. Electron. Mater. Lett. 18, 540–546 (2022). https://doi.org/10.1007/s13391-022-00367-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00367-3

Keywords

Navigation