Skip to main content
Log in

Experimental Study on the Preparation of MA@PS@Fe3O4 Phase Change Microcapsules to Inhibit the Development of Electric Branches in Epoxy Resin Cured Compounds

  • Original Article - Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Development of electric branches caused by partial discharge leads to degradation in the performance of epoxy resin insulation materials, which seriously threatens the safe and stable operation of power equipment. In this study, n-tetradecanol (MA)@polystyrene microsphere (PS)@Fe3O4 core–shell phase change microcapsules were designed and prepared. Doping 0.1 wt% phase change microcapsular material into the epoxy resin cured compound inhibited the development of electric branches. SEM and EDS tests showed that the phase-change microcapsules had monodisperse spherical core–shell structures with an MA encapsulation rate of 24.73% and excellent phase-change thermal storage capacity. Electric field simulations revealed that Fe3O4 nanoparticles in the microcapsule shell enhanced the local field strength of the cured epoxy resin and induced the development of electric branches toward the interior of the microcapsule. Moreover, doping of microcapsules into the epoxy resin significantly slowed the rate of temperature rise and thus inhibited further development of electric branches in epoxy resin cured products. In comparison with the epoxy resin cured without microcapsules, it was found that the longitudinal and transverse lengths of electric branches were reduced by 56.6% and 69.1%, respectively, in the epoxy resin cured with 0.1 wt% MA@PS@Fe3O4 microcapsules, and the electric branch initiation field strength was increased from 0.57 to 0.68 kV/mm. This indicated that MA@PS@Fe3O4 microcapsules significantly improved the electrical branch resistance of epoxy resin cured products, and this provides a new approach for extensive applications of epoxy resin insulation materials and safe and stable operation of power equipment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Peerzada, M., Abbasi, S., Lau, K.T., et al.: Additive manufacturing of epoxy resins: materials, methods, and latest trends. Ind. Eng. Chem. Res. 59, 6375–6390 (2020)

    Article  CAS  Google Scholar 

  2. Kim, J., Ma, B., Lee, K.: Comparison of effect of epoxy and silicone adhesive on the lifetime of plastic LED package. Electron. Mater. Lett. 9(4), 429–432 (2013)

    Article  CAS  Google Scholar 

  3. Pourrahimi, A.M., Hoang, T.A., Liu, D., et al.: Highly efficient interfaces in nanocomposites based on polyethylene and ZnO nano/hierarchical particles: a novel approach toward ultralow electrical conductivity insulations. Adv. Mater. 28(39), 8651–8657 (2016)

    Article  CAS  Google Scholar 

  4. Liu, Y., Cao, X., Chen, G.: Electrical tree initiation in XLPE cable insulation under constant DC, grounded DC, and at elevated temperature. IEEE Trans. Dielectr. Electr. Insul. 25(6), 2287–2295 (2018)

    Article  CAS  Google Scholar 

  5. Wei, Z., Hou, Y., Jiang, C., et al.: Graphene enhanced electrical properties of polyethylene blends for high-voltage insulation. Electron. Mater. Lett. 15, 582–594 (2019)

    Article  CAS  Google Scholar 

  6. Xin, D., Han, Q.: Estimating interfacial interaction energy of Cu-epoxy resin from molecular dynamics simulation. Electron. Mater. Lett. 10(3), 535–539 (2014)

    Article  CAS  Google Scholar 

  7. Hussain, M.R., Refaat, S.S., Abu-Rub, H.: Overview and partial discharge analysis of power transformers: a literature review. IEEE Access 9, 64587–64605 (2021)

    Article  Google Scholar 

  8. Yang, Y., He, J., Li, Qi., et al.: Self-healing of electrical damage in polymers using superparamagnetic nanoparticles. Nat. Nanotechnol. 14, 151–155 (2019)

    Article  CAS  Google Scholar 

  9. Wang, W.Y., Du, B.X., Kong, X.X., et al.: Effects of ferromagnetism particles on electrical tree growth in epoxy/Fe3O4 composites in magnetic field. IEEE Trans. Dielectr. Electr. Insul. 28(4), 1291–1299 (2021)

    Article  CAS  Google Scholar 

  10. Kurnianto, R., Murakami, Y., Nagao, M.: Investigation of filler effect on treeing phenomenon in epoxy resin under ac voltage. IEEE Trans. Dielectr. Electr. Insul. 15(4), 1112–1119 (2008)

    Article  CAS  Google Scholar 

  11. Zhao, Bo., Jiang, G.: Thermal conductive epoxy enhanced by nanodiamond-coated carbon nanotubes. Electron. Mater. Lett. 13(6), 512–517 (2017)

    Article  CAS  Google Scholar 

  12. Iijima, M., Kobayakawa, M., Yamazaki, M., et al.: Anionic surfactant with hydrophobic and hydrophilic chains for nanoparticle dispersion and shape memory polymer nanocomposites. J. Am. Chem. Soc. 131(45), 16342 (2009)

    Article  CAS  Google Scholar 

  13. Lewis, T.J.: Nanometric dielectrics. IEEE Trans. Dielect. Electr. Insul. 1(5), 812–825 (1994)

    Article  CAS  Google Scholar 

  14. Yoonessi, M., Lebrón-Colón, M., Scheiman, D., et al.: Carbon nanotube epoxy nanocomposites: the effects of interfacial modifications on the dynamic mechanical properties of the nanocomposites. Acs Appl. Mater. Interfaces 6(19), 16621–16630 (2016)

    Article  Google Scholar 

  15. Pourrahimi, A.M., Olsson, R.T., Hedenqvist, M.S.: Nanocomposites: the role of interfaces in polyethylene/metal-oxide nanocomposites for ultrahigh-voltage insulating materials. Adv Mater 4(30), 1703624 (2018)

    Article  Google Scholar 

  16. Ekeocha, J., Ellingford, C., Pan, M., et al.: Challenges and opportunities of self-healing polymers and devices for extreme and hostile environments. Adv. Mater. 33(33), 2008052 (2021)

    Article  CAS  Google Scholar 

  17. Urban, M.W., Davydovich, D., Yan, Y., et al.: Key-and-lock commodity self-healing copolymers. Science 362(6411), 220–225 (2018)

    Article  CAS  Google Scholar 

  18. Gao, L., Yang, Y., Xie, J., et al.: Autonomous self-healing of electrical degradation in dielectric polymers using in situ electroluminescence. Matter 2(2), 451–463 (2019)

    Article  Google Scholar 

  19. Zamal, H.H., Barba, D., Assa, B., et al.: Recovery of electro-mechanical properties inside self-healing composites through microencapsulation of carbon nanotubes. Sci. Rep. 10(1), 1–13 (2020)

    Article  Google Scholar 

  20. Meng, B., Yang, B., Zhang, X., et al.: Combinatorial surface coating and greatly-improved soft magnetic performance of Fe/Fe3O4/resin composites. Mater. Chem. Phys. 242, 122478 (2020)

    Article  CAS  Google Scholar 

  21. Zejun, Pu., Zhong, J., Liu, X.: Composites based on core–shell structured HBCuPc@CNTs-Fe3O4 and polyarylene ether nitriles with excellent dielectric and mechanical properties. J. Electron. Mater. 46(10), 5519–5530 (2017)

    Article  Google Scholar 

  22. Mai, Y., Bin, Du., Liu, Q., et al.: Influence of micro@nano-Al2O3 structure on mechanical properties, thermal conductivity, and electrical properties of epoxy resin composites. J. Electron. Mater. 51(1), 232–242 (2021)

    Article  Google Scholar 

  23. Cui, H., Li, D., Fan, Q.: Using a functional epoxy, micron silver flakes, nano silver spheres, and treated single-wall carbon nanotubes to prepare high performance electrically conductive adhesives. Electron. Mater. Lett. 9(3), 299–307 (2013)

    Article  CAS  Google Scholar 

  24. Iddrissu, I., Zheng, H., Rowland, S.M.: DC electrical tree growth in epoxy resin and the influence of the size of inceptive AC trees. IEEE Trans. Dielectr. Electr. Insul. 24(3), 1965–1972 (2017)

    Article  CAS  Google Scholar 

  25. Wang, P., Chen, Y., Akram, S., et al.: Effects of bipolar repetitive square wave voltage parameters on electrical tree characteristics of epoxy resin. Polym. Test. 103, 107371 (2021)

    Article  CAS  Google Scholar 

  26. He, C., Shi, M., Guo, R., et al.: Characteristics of AC PDs on epoxy insulation surface excited by different impulse voltages in SF 6 gas. IEEE Trans. Dielectr. Electr. Insul. 27(4), 1363–1371 (2020)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Du.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Du, B., Qi, W. et al. Experimental Study on the Preparation of MA@PS@Fe3O4 Phase Change Microcapsules to Inhibit the Development of Electric Branches in Epoxy Resin Cured Compounds. Electron. Mater. Lett. 18, 489–498 (2022). https://doi.org/10.1007/s13391-022-00361-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00361-9

Keywords

Navigation