Skip to main content
Log in

The Effect of Solvent Mixing Ratios on the Exfoliation of 2D NiTe2 Thin Films for Transparent Electrodes

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

NiTe2 thin films have been considered promising candidates for transparent electrodes due to their high electrical conductivity and 2-dimensional (2D) layered structure. The transparency of 2D thin films with layered structure can be further improved by the exfoliation process. In the process, the increase in electrical resistance should be minimized by maintaining electrical continuity in the thin film. In this study, the mixing ratio of ethanol, acetone, and DI water in the solvent for the liquid-phase exfoliation (LPE) process was optimized to achieve high transmittance while suppressing the increase in electrical resistance. We prepared three solvents by varying the mixing ratio (ethanol:acetone:DI water = 2:4:4, 3:3:4, and 4:2:4). In the three mixed solvents, NiTe2 thin films were removed by two mechanisms: separation from the substrate and layer-by-layer exfoliation. Some of the NiTe2 grains were separated from the glass substrate in the early stage of the LPE process, and layer-by-layer exfoliation became the major mechanism when LPE proceeded longer than 6 h in the three solvents. Among the three solvents, the one with a 3:3:4 ratio more effectively suppressed the increase in electrical resistance during the separation of the NiTe2 thin film. The separation of NiTe2 grains provided an advantageous condition for layer-by-layer exfoliation. Additionally, the similarity of the polarization and dispersion ratio of 3-3-4 with the one of NiTe2 accelerated layer-by-layer exfoliation. The optimized solvent of 3-3-4 improved the transmittance of the NiTe2 thin film from 59.6% to 68.4% after the 8-h LPE process.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhu, Y.H., Zhang, J.C., Chen, Z.T., Egawa, T.: Demonstration on GaN-based light-emitting diodes grown on 3C-SiC/Si(111). J. Appl. Phys. 106, 124506 (2009). https://doi.org/10.1063/1.3273311

    Article  CAS  Google Scholar 

  2. Horng, R.-H., Wuu, D.-S., Lien, Y.-C., Lan, W.-H.: Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN. Appl. Phys. Lett. 79, 2925–2927 (2001). https://doi.org/10.1063/1.1415048

    Article  CAS  Google Scholar 

  3. Van Nguyen, T., Do, H.H., Guo, W., Tekalne, M., Van Le, Q., Nguyen, T.P., Cho, J.H., Ahn, S.H., Kim, S.Y.: Tungsten Oxide-Modified ITO Electrode for Electrochromic Window Based on Reversible Metal Electrodeposition. Electron. Mater. Lett. 18, 36–46 (2022). https://doi.org/10.1007/s13391-021-00320-w

    Article  CAS  Google Scholar 

  4. Xu, Y., Liu, J.: Graphene as transparent electrodes: fabrication and new emerging applications. Small 12, 1400–1419 (2016). https://doi.org/10.1002/smll.201502988

    Article  CAS  Google Scholar 

  5. Hu, L., Kim, H.S., Lee, J.Y., Peumans, P., Cui, Y.: Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4, 2955–2963 (2010). https://doi.org/10.1021/nn1005232

    Article  CAS  Google Scholar 

  6. Park, J.-S., Park, T.-G., Park, J.-S.: Characterization of Silver Nanowire Flexible Transparent Electrode with Grid Pattern Formed via Thermocompression. Electron. Mater. Lett. 17, 260–267 (2021). https://doi.org/10.1007/s13391-021-00271-2

    Article  CAS  Google Scholar 

  7. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. Il Song, Y.-J. Kim, K.S. Kim, B. Özyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol. 5 (2010) 574–578. https://doi.org/10.1038/nnano.2010.132.

  8. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene, Science (80-. ). 320 (2008) 1308. https://doi.org/10.1126/science.1156965.

  9. K.S. Novoselov, A.K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science (80-. ). 306 (2004) 666–669. https://doi.org/10.1016/j.medcli.2015.04.005.

  10. Shim, J., Lee, J., Lee, J.S., Son, D.I.: Thermally enhanced boron nitride nanotube/reduced graphene oxide paper and their application. Electron. Mater. Lett. 17, 500–506 (2021). https://doi.org/10.1007/s13391-021-00304-w

    Article  CAS  Google Scholar 

  11. Prabukumar, C., Bhat, K.U.: Beneficial effect of manganese(II) ions on the morphology of polyol synthesised silver nanowires. Electron. Mater. Lett. 16, 264–275 (2020). https://doi.org/10.1007/s13391-020-00211-6

    Article  CAS  Google Scholar 

  12. Bellew, A.T., Manning, H.G., Gomes da Rocha, C., Ferreira, M.S., Boland, J.J.: Resistance of single Ag nanowire junctions and their role in the conductivity of nanowire networks. ACS Nano 9, 11422–11429 (2015). https://doi.org/10.1021/acsnano.5b05469

    Article  CAS  Google Scholar 

  13. Jin, Y., Wang, K., Cheng, Y., Pei, Q., Xu, Y., Xiao, F.: Removable large-area ultrasmooth silver nanowire transparent composite electrode. ACS Appl. Mater. Interfaces. 9, 4733–4741 (2017). https://doi.org/10.1021/acsami.6b15025

    Article  CAS  Google Scholar 

  14. Kim, T., Canlier, A., Cho, C., Rozyyev, V., Lee, J.Y., Han, S.M.: Highly transparent Au-coated ag nanowire transparent electrode with reduction in haze. ACS Appl. Mater. Interfaces. 6, 13527–13534 (2014). https://doi.org/10.1021/am502632t

    Article  CAS  Google Scholar 

  15. Bark, H., Choi, Y., Jung, J., Kim, J.H., Kwon, H., Lee, J., Lee, Z., Cho, J.H., Lee, C.: Large-area niobium disulfide thin films as transparent electrodes for devices based on two-dimensional materials. Nanoscale 10, 1056–1062 (2018). https://doi.org/10.1039/C7NR07593F

    Article  CAS  Google Scholar 

  16. Park, H.J., Lee, J.H., Min, B.U., Kim, S.J.: The effect of post annealing on physical properties of NiTe2 thin film fabricated by magnetron sputtering. J. Korean Inst. Met. Mater. 58, 195–200 (2020). https://doi.org/10.3365/KJMM.2020.58.3.195

    Article  CAS  Google Scholar 

  17. Lee, J.H., Park, H.J., Im, C.E., Kim, J.G., Gu, D.E., Kim, S.J.: Effect of Co-solvent percentages on the exfoliation rate of NiTe2 thin film for transparent electrodes. J. Korean Inst. Met. Mater. 59, 481–490 (2021). https://doi.org/10.3365/KJMM.2021.59.7.481

    Article  CAS  Google Scholar 

  18. Lee, S.H., Kim, S.Y., Kim, S.M., Jeong, J.I., Kim, S.J.: Fabrication of transparent NiTe2electrodes via magnetron sputtering combined with chemical exfoliation. J. Alloys Compd. 704, 607–613 (2017). https://doi.org/10.1016/j.jallcom.2017.02.112

    Article  CAS  Google Scholar 

  19. Q. Liu, F. Fei, B. Chen, X. Bo, B. Wei, S. Zhang, M. Zhang, F. Xie, M. Naveed, X. Wan, F. Song, B. Wang, Nontopological origin of the planar Hall effect in the type-II Dirac semimetal NiTe2, Phys. Rev. B. 99 (2019). https://doi.org/10.1103/PhysRevB.99.155119.

  20. Li, S., Zhang, X., Bao, H.: Thermal transport by electrons and phonons in PdTe2: an ab initio study. Phys. Chem. Chem. Phys. 23, 5956–5962 (2021). https://doi.org/10.1039/D0CP06101H

    Article  CAS  Google Scholar 

  21. Lee, J.H., Cho, Y.-G., Gu, D., Kim, S.J.: 2D PdTe2 thin-film-coated current collectors for long-cycling anode-free rechargeable batteries. ACS Appl. Mater. Interfaces. (2022). https://doi.org/10.1021/acsami.1c21183

    Article  Google Scholar 

  22. Shen, J., He, Y., Wu, J., Gao, C., Keyshar, K., Zhang, X., Yang, Y., Ye, M., Vajtai, R., Lou, J., Ajayan, P.M.: Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Lett. 15, 5449–5454 (2015). https://doi.org/10.1021/acs.nanolett.5b01842

    Article  CAS  Google Scholar 

  23. Owens, D.K.: Some thermodynamic aspects of polymer adhesion. J. Appl. Polym. Sci. 14, 1725–1730 (1970). https://doi.org/10.1002/app.1970.070140706

    Article  CAS  Google Scholar 

  24. Shen, J., Wu, J., Wang, M., Dong, P., Xu, J., Li, X., Zhang, X., Yuan, J., Wang, X., Ye, M., Vajtai, R., Lou, J., Ajayan, P.M.: Surface tension components based selection of Cosolvents for efficient liquid phase exfoliation of 2D materials. Small 12, 2741–2749 (2016). https://doi.org/10.1002/smll.201503834

    Article  CAS  Google Scholar 

  25. M. Ohring, Chapter 7 - Substrate Surfaces and Thin-Film Nucleation, in: M.B.T.-M.S. of T.F. (Second E. Ohring (Ed.), Academic Press, San Diego, 2002: pp. 357–415. https://doi.org/10.1016/B978-012524975-1/50010-0.

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research under award number FA2386-20-1-4081 and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1F1A1047375), by the Education and Research Promotion Program of KOREATECH in 2021, and by the KOREATECH Sabbatical Program in 2020. XRD, XPS, AFM, and SEM analyses were performed at the Cooperative Equipment Center at KOREATECH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk Jun Kim.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Im, C.Y., Kim, J.G., Kwon, M.Y. et al. The Effect of Solvent Mixing Ratios on the Exfoliation of 2D NiTe2 Thin Films for Transparent Electrodes. Electron. Mater. Lett. 18, 361–369 (2022). https://doi.org/10.1007/s13391-022-00350-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00350-y

Keywords

Navigation