Skip to main content
Log in

Nanoimprinting of Perovskite Layer for Light-Harvesting Effect in Photovoltaic Devices

  • Original Article - Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

A light-harvesting effect was successfully achieved in photovoltaic devices by the structuring of an active perovskite layer through nanoimprinting. This was done by transforming a commercial CD-R pattern into a polydimethylsiloxane (PDMS) film. The latter was then used for replicating the perovskite layers under increased pressures and temperatures. The Young’s modulus of the PDMS film was regulated by the mixing ratio of the base and curing agents, and the average height of the pattern was reported for an optimal 5:1 base-to-curing agent ratio. Under these conditions, the replication efficiency reached 80% at a pressure of ~ 4.9 kPa. To investigate the manner in which the structuring of these patterned perovskite layers affects optoelectronic devices, we incorporated them into photovoltaic cells. This resulted in improved JV characteristics, as observed from an increase in both fill factor (FF) and short circuit current density (Jsc), from 73.20 to 76.35% and from 12.853 to 15.532 mA cm−2, respectively. The increase in FF was attributed to a large contact area between the perovskite and electron transport layers, while the increase in Jsc was due to the enhanced light-trapping of the periodic grating patterns of the perovskite layer.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kalaiselvi, C.R., Muthukumarasamy, N., Velauthapillai, D., Kang, M., Senthil, T.S.: Importance of halide perovskites for next generation solar cells—a review. Mater. Lett 219, 198–200 (2018)

    Article  CAS  Google Scholar 

  2. Ansari, M.I.H., Qurashi, A., Nazeeruddin, M.K.: Frontiers, opportunities, and challenges in perovskite solar cells: a critical review. J. Photochem. Photobiol. C: Photochem. Rev. 35, 1–24 (2018)

    Article  CAS  Google Scholar 

  3. Kojima, A., et al.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  CAS  Google Scholar 

  4. Lin, L., et al.: Inorganic electron transport materials in perovskite solar cells. Adv. Funct. Mater. 31, 2008300 (2020)

    Article  Google Scholar 

  5. Wali, Q., Elumalai, N.K., Iqbal, Y., Uddin, A., Jose, R.: Tandem perovskite solar cells. Renew. Sustain. Energy Rev. 84, 89–110 (2018)

    Article  CAS  Google Scholar 

  6. Yin, Y., Fu, S., Zhou, S., Song, Y., Li, L., Zhang, M., Wang, J., Mariyappan, P., Alshehri, S.M., Ahamad, T., Yamauchi, Y.: Efficient and stable ideal bandgap perovskite solar cell achieved by a small amount of Tin substituted methylammonium lead iodide. Electron. Mater. Lett. 16, 224–230 (2020)

  7. Park, H. H.: Transparent electrode techniques for semitransparent and tandem perovskite solar cells. Electron. Mater. Lett. 17, 18–32 (2021)

  8. Wang, H., et al.: Colorful perovskite solar cells: progress, strategies, and potentials. J. Phys. Chem. Lett. 12, 1321–1329 (2021)

    Article  CAS  Google Scholar 

  9. Deng, K., Liu, Z., Wang, M., Li, L.: Nanoimprinted grating-embedded perovskite solar cells with improved light management. Adv. Funct. Mater. 29, 1900830 (2019)

    Article  Google Scholar 

  10. Wang, H., et al.: Nanoimprinted perovskite metasurface for enhanced photoluminescence. Opt Express 25, A1162–A1171 (2017)

    Article  CAS  Google Scholar 

  11. Nam, W.I., Yoo, Y.J., Song, Y.M.: Geometrical shape design of nanophotonic surfaces for thin film solar cells. Opt. Express 24, A1033–A1044 (2016)

    Article  CAS  Google Scholar 

  12. Sheng, X., Johnson, S.G., Broderick, L.Z., Michel, J., Kimerling, L.C.: Integrated photonic structures for light trapping in thin-film Si solar cells. Appl. Phys. Lett. 100, 111110 (2012)

    Article  Google Scholar 

  13. Song, Y.M., Yu, J.S., Lee, Y.T.: Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement. Opt. Lett. 35, 276–278 (2010)

    Article  CAS  Google Scholar 

  14. Guo, S., Liu, Y.S., Zhang, X.L., Liu, Y.F., Bi, Y.G., Wen, X.M., Feng, J., Sun, H.B.: Improved light extraction in all-inorganic perovskite light-emitting devices with periodic nanostructures by nanoimprinting lithography. Opt. Lett. 18, 5156–5159 (2020)

    Article  Google Scholar 

  15. Cao, F., Wang, M., Sun, H., Tian, W., Li, L.: Ordered array structures for efficient perovskite solar cells. Eng. Rep. 2, e12319 (2020)

    CAS  Google Scholar 

  16. Kim, T., Chu, Y. H., Lee, J., Cho, S. H., Kim, S., Bang, K., Lee, H., Lim, C., Lee, Y. S.: Confined growth of high-quality single crystal MAPbBr3 by inverse temperature crystallization for photovoltaic applications. Electron. Mater. Lett. 17, 347–354, (2021)

  17. Suzuki, A., Kitagawa, K., Oku, T., Okita, M., Fukunishi, S., Tachikawa, T.: Additive effects of copper and alkali metal halides into methylammonium lead iodide perovskite solar cells. Electron. Mater. Lett. 18, 176–186 (2022)

  18. Tucher, N., Höhn, O., Hauser, H., Müller, C., Bläsi, B.: Characterizing the degradation of PDMS stamps in nanoimprint lithography. Microelectron. Eng. 180, 40–44 (2017)

    Article  CAS  Google Scholar 

  19. Ko, S.H., et al.: Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication. Nano Lett. 7, 1869–1877 (2007)

    Article  CAS  Google Scholar 

  20. Carlberg, P., Montelius, L., Tegenfeldt, J.: Nanoimprint in PDMS on glass with two-level hybrid stamp. Microelectron. Eng. 85, 210–213 (2008)

    Article  CAS  Google Scholar 

  21. Rogers, J.A., Nuzzo, R.G.: Recent progress in soft lithography. Mater. Today 8, 50–56 (2005)

    Article  CAS  Google Scholar 

  22. Khan, S.U., Gobel, O.F., Blank, D.H., ten Elshof, J.E.: Patterning lead zirconate titanate nanostructures at sub-200-nm resolution by soft confocal imprint lithography and nanotransfer molding. ACS Appl. Mater. Interfaces 1, 2250–2255 (2009)

    Article  CAS  Google Scholar 

  23. Schmid, H., Michel, B.: Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33, 3042–3049 (2000)

    Article  CAS  Google Scholar 

  24. Truong, T.T., et al.: Soft lithography using acryloxy perfluoropolyether composite stamps. Langmuir 23, 2898–2905 (2007)

    Article  CAS  Google Scholar 

  25. Wang, Y., et al.: Diffraction-grated perovskite induced highly efficient solar cells through nanophotonic light trapping. Adv. Energy Mater. 8, 1702960 (2018)

    Article  Google Scholar 

  26. Jang, S., et al.: Facile fabrication of three-dimensional TiO2 structures for highly efficient perovskite solar cells. Nano Energy 22, 499–506 (2016)

    Article  CAS  Google Scholar 

  27. Jeong, B., et al.: Polymer-assisted nanoimprinting for environment- and phase-stable perovskite nanopatterns. ACS Nano 14, 1645–1655 (2020)

    Article  CAS  Google Scholar 

  28. Bender, M., et al.: High resolution lithography with PDMS molds. J. Vac. Sci. Technol. B 22, 3229–3232 (2004)

    Article  CAS  Google Scholar 

  29. Muller, A., Wapler, M.C., Wallrabe, U.: A quick and accurate method to determine the Poisson’s ratio and the coefficient of thermal expansion of PDMS. Soft Matter 15, 779–784 (2019). https://doi.org/10.1039/c8sm02105h

    Article  CAS  Google Scholar 

  30. Lee, H., Chae, S., Yi, A., Kim, H.J.: Hydrophobic stretchable polydimethylsiloxane films with wrinkle patterns prepared via a metal-assisted chemical etching process using a Si master mold. J. Appl. Polym. Sci. (2020). https://doi.org/10.1002/app.50398

    Article  Google Scholar 

  31. Bang, J., et al.: Highly sensitive temperature sensor: ligand-treated Ag nanocrystal thin films on PDMS with thermal expansion strategy. Adv. Funct. Mater. 29, 1903047 (2019)

    Article  Google Scholar 

  32. Lu, Y.-A., et al.: Coral-like perovskite nanostructures for enhanced light-harvesting and accelerated charge extraction in perovskite solar cells. Nano Energy 58, 138–146 (2019)

    Article  CAS  Google Scholar 

  33. Chen, J.D., Jin, T.Y., Li, Y.Q., Tang, J.X.: Recent progress of light manipulation strategies in organic and perovskite solar cells. Nanoscale 11, 18517–18536 (2019)

    Article  CAS  Google Scholar 

  34. Nootchanat, S., et al.: Grating-coupled surface plasmon resonance enhanced organic photovoltaic devices induced by Blu-ray disc recordable and Blu-ray disc grating structures. Nanoscale 9, 4963–4971 (2017)

    Article  CAS  Google Scholar 

  35. Jeong, B., Han, H., Park, C.: Micro- and nanopatterning of halide perovskites where crystal engineering for emerging photoelectronics meets integrated device array technology. Adv. Mater. 32, 2000597 (2020)

    Article  CAS  Google Scholar 

  36. Rodriguez, I., et al.: Groove-assisted solution growth of lead bromide perovskite aligned nanowires: a simple method towards photoluminescent materials with guiding light properties. Mater. Chem. Front. 3, 1754–1760 (2019)

    Article  CAS  Google Scholar 

  37. Kessel, A., et al.: Soft lithography for manufacturing scalable perovskite metasurfaces with enhanced emission and absorption. Adv. Opt. Mater. 8, 2001627 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Korea Electric Power Corporation (R19XO01-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyo Jung Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Kim, H.J. Nanoimprinting of Perovskite Layer for Light-Harvesting Effect in Photovoltaic Devices. Electron. Mater. Lett. 18, 407–414 (2022). https://doi.org/10.1007/s13391-022-00348-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00348-6

Keywords

Navigation