Skip to main content
Log in

Fabricating Fe3O4 and Fe3O4&Fe Flower-Like Microspheres for Electromagnetic Wave Absorbing in C and X Bands

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Magnetic composites have received increasing attention for electromagnetic wave absorption (EMA) applications. However, the practical EMA performance of the materials is severely hampered by mismatching impedance characteristics and finite electromagnetic attenuation capacity. Controlling the components and building the architecture fabrication is necessary to solve these issues. Herein, a series of Fe3O4, Fe3O4&Fe and Fe microspheres with flower-like hierarchical structures were constructed through a solvothermal method followed by an annealed process. This hierarchical structure and the synergy effect of dielectric dissipation and magnetic loss capacity offer Fe3O4 a perfect impedance matching, providing an excellent EMA performance of an effective absorption bandwidth (EAB) of 4.0 GHz and a reflection loss (RL) of 67.9 dB. Meanwhile, the coordination of the hierarchical structures and the multiple components endow Fe3O4&Fe composites with an EAB as wide as 5.7 GHz (9.0–14.7 GHz) and a RL as strong as 78.7 dB at 1.88 mm, which covers 75% X and 45% Ku bands. Such a remarkable lightweight and broad properties is due to the decent X band impedance matching and appropriate attenuation capacity. Therefore, this work highlights the significant of regulating the hierarchical structure and components to enhance the EMA performances.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liang, L., Gu, W., Wu, Y., Zhang, B., Wang, G., Yang, Y., Ji, G.: Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34(4), 2106195 (2022). https://doi.org/10.1002/adma.202106195

    Article  CAS  Google Scholar 

  2. Liang, L., Li, Q., Yan, X., Feng, Y., Wang, Y., Zhang, H.-B., Zhou, X., Liu, C., Shen, C., Xie, X.: Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982

    Article  CAS  Google Scholar 

  3. Lan, D., Gao, Z., Zhao, Z., Wu, G., Kou, K., Wu, H.: Double-shell hollow glass microspheres@Co2SiO4 for lightweight and efficient electromagnetic wave absorption. Chem. Eng. J. 408, 127313 (2021). https://doi.org/10.1016/j.cej.2020.127313

    Article  CAS  Google Scholar 

  4. Li, X., You, W., Xu, C., Wang, L., Yang, L., Li, Y., Che, R.: 3D Seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 13, 157 (2021). https://doi.org/10.1007/s40820-021-00680-w

    Article  CAS  Google Scholar 

  5. Quan, B., Shi, W., Ong, S.J.H., Lu, X., Wang, P.L., Ji, G., Guo, Y., Zheng, L., Xu, Z.J.: Defect engineering in two common types of dielectric materials for electromagnetic absorption applications. Adv. Funct. Mater. 29(28), 1901236 (2019). https://doi.org/10.1002/adfm.201901236

    Article  CAS  Google Scholar 

  6. He, G., Duan, Y., Pang, H., Zhang, X.: Rational design of mesoporous MnO2 microwave absorber with tunable microwave frequency response. Appl. Surf. Sci. 490, 372–382 (2019). https://doi.org/10.1016/j.apsusc.2019.06.037

    Article  CAS  Google Scholar 

  7. Zhou, C., Wu, C., Yan, M.: A versatile strategy towards magnetic/dielectric porous heterostructure with confinement effect for lightweight and broadband electromagnetic wave absorption. Chem. Eng. J. 370, 988–996 (2019). https://doi.org/10.1016/j.cej.2019.03.295

    Article  CAS  Google Scholar 

  8. Liang, J., Chen, J., Shen, H., Hu, K., Zhao, B., Kong, J.: Hollow Porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chem. Mater. 33(5), 1789–1798 (2021). https://doi.org/10.1021/acs.chemmater.0c04734

    Article  CAS  Google Scholar 

  9. Tian, W., Li, J., Liu, Y., Ali, R., Guo, Y., Deng, L., Mahmood, N., Jian, X.: Atomic-scale layer-by-layer deposition of FeSiAl@ZnO@Al2O3 hybrid with threshold anti-corrosion and ultra-high microwave absorption properties in low-frequency bands. Nano-Micro Lett. 13(1), 1–14 (2021). https://doi.org/10.1007/s40820-021-00678-4

    Article  CAS  Google Scholar 

  10. Zhou, X., Jia, Z., Zhang, X., Wang, B., Wu, W., Liu, X., Xu, B., Wu, G.: Controllable synthesis of Ni/NiO@Porous carbon hybrid composites towards remarkable electromagnetic wave absorption and wide absorption bandwidth. J. Mater. Sci. Technol. 87, 120–132 (2021). https://doi.org/10.1016/j.jmst.2021.01.073

    Article  CAS  Google Scholar 

  11. Li, X., You, W., Zhang, R., Fang, J., Zeng, Q., Li, X., Xu, C., Wang, M., Che, R.: Synthesis of nonspherical hollow architecture with magnetic Fe core and Ni decorated tadpole-like shell as ultrabroad bandwidth microwave absorbers. Small 17(46), 2103351 (2017). https://doi.org/10.1002/smll.202103351

    Article  CAS  Google Scholar 

  12. Liu, J., Liang, H., Wu, H.: Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance. Compos. A 130, 105760 (2020). https://doi.org/10.1016/j.compositesa.2019.105760

    Article  CAS  Google Scholar 

  13. Meng, X., Lei, W., Yang, W., Liu, Y., Yu, Y.: Fe3O4 nanoparticles coated with ultra-thin carbon layer for polarization-controlled microwave absorption performance. J. Colloid Interface Sci. 600, 382–389 (2021). https://doi.org/10.1016/j.jcis.2021.05.055

    Article  CAS  Google Scholar 

  14. Xu, J., Liu, Z., Li, Q., Wang, Y., Shah, T., Ahmad, M., Zhang, Q., Zhang, B.: Wrinkled Fe3O4@C magnetic composite microspheres: regulation of magnetic content and their microwave absorbing performance. J. Colloid Interface Sci. 601, 397–410 (2021). https://doi.org/10.1016/j.jcis.2021.05.153

    Article  CAS  Google Scholar 

  15. Cui, C., Guo, R., Ren, E., Xiao, H., Zhou, M., Lai, X., Qin, Q., Jiang, S., Qin, W.: MXene-based rGO/Nb2CTx/Fe3O4 composite for high absorption of electromagnetic wave. Chem. Eng. J. 405, 126626 (2021). https://doi.org/10.1016/j.cej.2020.126626

    Article  CAS  Google Scholar 

  16. Ning, M., Lei, Z., Tan, G., Man, Q., Li, J., Li, R.-W.: Dumbbell-like Fe3O4@N-doped carbon@2H/1T-MoS2 with tailored magnetic and dielectric loss for efficient microwave absorbing. ACS Appl. Mater. Interfaces 13(39), 47061–47071 (2021). https://doi.org/10.1021/acsami.1c13852

    Article  CAS  Google Scholar 

  17. Zhou, X., Zhang, C., Zhang, M., Feng, A., Qu, S., Zhang, Y., Liu, X., Jia, Z., Wu, G.: Synthesis of Fe3O4/carbon foams composites with broadened bandwidth and excellent electromagnetic wave absorption performance. Compos. A 127, 105627 (2019). https://doi.org/10.1016/j.compositesa.2019.105627

    Article  CAS  Google Scholar 

  18. Zeng, X., Jiang, G., Zhu, L., Wang, C., Chen, M., Yu, R.: Fe3O4 nanoflower-carbon nanotube composites for microwave shielding. ACS Appl. Nano Mater. 2(9), 5475–5482 (2019). https://doi.org/10.1021/acsanm.9b01076

    Article  CAS  Google Scholar 

  19. Chen, N., Jiang, J.-T., Guan, Z.-J., Yan, S.-J., Zhen, L., Xu, C.-Y.: Designing Co7Fe3@TiO2 core-shell nanospheres for electromagnetic wave absorption in S and C bands. Electron. Mater. Lett. 16(5), 413–423 (2020). https://doi.org/10.1007/s13391-020-00234-z

    Article  CAS  Google Scholar 

  20. Cheng, Y., Li, Y., Ji, G., Quan, B., Liang, X., Zhao, Z., Cao, J., Du, Y.: Magnetic and electromagnetic properties of Fe3O4/Fe composites prepared by a simple one-step ball-milling. J. Alloys Compd. 708, 587–593 (2017). https://doi.org/10.1016/j.jallcom.2017.03.060

    Article  CAS  Google Scholar 

  21. Xu, C., Wang, L., Li, X., Qian, X., Wu, Z., You, W., Pei, K., Qin, G., Zeng, Q., Yang, Z.: Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nano-Micro Lett. 13(1), 1–15 (2021). https://doi.org/10.1007/s40820-020-00572-5

    Article  CAS  Google Scholar 

  22. Zhang, Y., Yang, Z., Li, M., Yang, L., Liu, J., Ha, Y., Wu, R.: Heterostructured CoFe@C@MnO2 nanocubes for efficient microwave absorption. Chem. Eng. J. 382, 123039 (2020). https://doi.org/10.1016/j.cej.2019.123039

    Article  CAS  Google Scholar 

  23. Choi, M., Choi, D., Kim, J.: Magnetic permeability behaviors of FeCo micro hollow fiber composites. Electron. Mater. Lett. 11(5), 782–787 (2015). https://doi.org/10.1007/s13391-015-4500-8

    Article  CAS  Google Scholar 

  24. Jang, M.-S., Chang, M.S., Kwon, Y.-T., Yang, S., Gwak, J., Kwon, S.J., Lee, J., Song, K., Park, C.R., Lee, S.B., et al.: High-throughput thermal plasma synthesis of FexCo1-x nano-chained particles with unusually high permeability and their electromagnetic wave absorption properties at high frequency (1–26 GHz). Nanoscale 13(27), 12004–12016 (2021). https://doi.org/10.1039/D1NR01845K

    Article  CAS  Google Scholar 

  25. Gao, N., Li, W.-P., Wang, W.-S., Liu, D.-P., Cui, Y.-M., Guo, L., Wang, G.-S.: Balancing dielectric loss and magnetic loss in Fe-NiS2/NiS/PVDF composites toward strong microwave reflection loss. ACS Appl. Mater. Interfaces 12(12), 14416–14424 (2020). https://doi.org/10.1021/acsami.9b23379

    Article  CAS  Google Scholar 

  26. Li, Z., Lin, H., Ding, S., Ling, H., Wang, T., Miao, Z., Zhang, M., Meng, A., Li, Q.: Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. Carbon 167, 148–159 (2020). https://doi.org/10.1016/j.carbon.2020.05.070

    Article  CAS  Google Scholar 

  27. Li, X., Qu, X., Xu, Z., Dong, W., Wang, F., Guo, W., Wang, H., Du, Y.: Fabrication of three-dimensional flower-like heterogeneous Fe3O4/Fe particles with tunable chemical composition and microwave absorption performance. ACS Appl. Mater. Interfaces 11(21), 19267–19276 (2019). https://doi.org/10.1021/acsami.9b01783

    Article  CAS  Google Scholar 

  28. Liu, X., Hao, C., Jiang, H., Zeng, M., Yu, R.: Hierarchical NiCo2O4/Co3O4/NiO porous composite: a lightweight electromagnetic wave absorber with tunable absorbing performance. J. Mater. Chem. C 5(15), 3770–3778 (2017). https://doi.org/10.1039/C6TC05167G

    Article  CAS  Google Scholar 

  29. Wang, R., He, M., Zhou, Y., Nie, S., Wang, Y., Liu, W., He, Q., Wu, W., Bu, X., Yang, X.: Self-assembled 3D flower-like composites of heterobimetallic phosphides and carbon for temperature-tailored electromagnetic wave absorption. ACS Appl. Mater. Interfaces 11(41), 38361–38371 (2019). https://doi.org/10.1021/acsami.9b14873

    Article  CAS  Google Scholar 

  30. Wang, J., Liu, L., Jiao, S., Ma, K., Lv, J., Yang, J.: Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/10.1002/adfm.202002595

    Article  CAS  Google Scholar 

  31. Zhao, Y., Zuo, X., Guo, Y., Huang, H., Zhang, H., Wang, T., Wen, N., Chen, H., Cong, T., Muhammad, J., et al.: Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13(1), 144 (2021). https://doi.org/10.1007/s40820-021-00667-7

    Article  CAS  Google Scholar 

  32. Li, X., Dong, W., Zhang, C., Guo, W., Wang, C., Li, Y., Wang, H.: Leaf-Like Fe/C composite assembled by iron veins interpenetrated into amorphous carbon lamina for high-performance microwave absorption. Compos. A 140, 106202 (2021). https://doi.org/10.1016/j.compositesa.2020.106202

    Article  CAS  Google Scholar 

  33. Xu, Z., Du, Y., Liu, D., Wang, Y., Ma, W., Wang, Y., Xu, P., Han, X.: Pea-like Fe/Fe3C nanoparticles embedded in nitrogen-doped carbon nanotubes with tunable dielectric/magnetic loss and efficient electromagnetic absorption. ACS Appl. Mater. Interfaces 11(4), 4268–4277 (2019). https://doi.org/10.1021/acsami.8b19201

    Article  CAS  Google Scholar 

  34. Yang, Z., Xue, T., Yu, L., Ji, G., Xu, G., Xu, Z.J.: Nanocasting synthesis of Fe3O4@HTC nanocapsules and their superior electromagnetic properties. RSC Adv. 6(24), 20386–20391 (2016). https://doi.org/10.1039/C6RA01930G

    Article  CAS  Google Scholar 

  35. Yang, P., Yu, M., Fu, J., Wang, L.: Synthesis and microwave absorption properties of hierarchical Fe micro-sphere assembly by nano-plates. J. Alloys Compd. 721, 449–455 (2017). https://doi.org/10.1016/j.jallcom.2017.05.296

    Article  CAS  Google Scholar 

  36. Tong, G.-X., Wu, W.-H., Hu, Q., Yuan, J.-H., Qiao, R., Qian, H.-S.: Enhanced electromagnetic characteristics of porous iron particles made by a facile corrosion technique. Mater. Chem. Phys. 132(2–3), 563–569 (2012). https://doi.org/10.1016/j.matchemphys.2011.11.070

    Article  CAS  Google Scholar 

  37. Wu, H., Liu, J., Liang, H., Zang, D.: Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption. Chem. Eng. J. 393, 124743 (2020). https://doi.org/10.1016/j.cej.2020.124743

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Liaoning Province (Grant number 2021-BS-186, 2021-NLTS-12-01) and the Basic Research Project Educational Department of Liaoning Province (LQ2020002).

Author information

Authors and Affiliations

Authors

Contributions

NC: Conceptualization, Investigation, Data curation, Formal analysis, Funding acquisition, Project administration, Writing-original draft, Writing-review & editing. DL: Writing-review & editing, Data curation. X-YW: Investigation, Formal analysis. Z-JG: Data curation, Validation. J-TJ: Investigation, Formal analysis. K-JW: Funding acquisition, Supervision, Resources.

Corresponding authors

Correspondence to Na Chen or Kang-Jun Wang.

Ethics declarations

Conflict of interest

The authors declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 473 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Li, D., Wang, XY. et al. Fabricating Fe3O4 and Fe3O4&Fe Flower-Like Microspheres for Electromagnetic Wave Absorbing in C and X Bands. Electron. Mater. Lett. 18, 370–380 (2022). https://doi.org/10.1007/s13391-022-00347-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00347-7

Keywords

Navigation