Skip to main content
Log in

Effects of Spin-Casting Speed on Solar Cell Performances and Corresponding Films Morphology and Optical Properties Using 2D Perovskite of PEA2MA2Pb3I10

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

On hot substrates with a temperature of 100 °C, the qualities of two-dimensional perovskite PEA2MA2Pb3I10 (PEA = phenethylammonium, MA = methylammonium) films have been explored which are constructed with different spin-casting speeds. These films are performed at the speed of 1000, 2000, 4000, and 6000 revolution per minute (RPM). Below 4000 r, a higher RPM results in higher crystalline quality with more uniform morphology. Correspondingly, 4000 r devices show better performance on average (4.3% power conversion efficiency) and less hysteresis in the J-V curve than 1000 r (3.6%) and 2000 r devices (3.4%). However, for devices that were fabricated at 6000 r, inferior performance (2.8% on average) may not be predicted simply by the morphology characterization or optical measurement results at room temperature; instead, carrier trapping states can occur that result in thermally activated PL below 200 K with an activation energy of 18 meV, which do not occur in the 1000 r, 2000 r, and 4000 r films. Our results suggest that for evaluating 2D perovskite films prior to fabricating optimal devices, multiple morphology characterizations and optical measurements, including of low-temperature PL, will be helpful.

Graphical Abstract

Integrated PL intensity as a function of the inverse temperature of 1000 r, 2000 r, 4000 r and 6000 r, respectively, shows that optical measurements (especially low-temperature PL) are needed if we want to directly linked the optical properties of perovskite materials to the performances of corresponding devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang, Y., Liu, C., Mahata, A., Li, M., Roldán Carmona, C., Ding, Y., Arain, Z., Xu, W., Yang, Y., Schouwink, P.A., Züttel, A., De Angelis, F., Dai, S., Nazeeruddin, M.K.: Universal approach toward high-efficiency two-dimensional perovskite solar cells via a vertical-rotation process. Energy Environ. Sci. (2020). https://doi.org/10.1039/d0ee01833c

    Article  Google Scholar 

  2. Liao, Y., Shang, Y., Wei, Q., Wang, H., Ning, Z.: Two-dimensional tin perovskite nanoplate for pure red light-emitting diodes. J. Phys. D: Appl. Phys (2020). https://doi.org/10.1088/1361-6463/ab9673

    Article  Google Scholar 

  3. Li, Z., Cao, K., Li, J., Tang, Y., Ding, X., Yu, B.: Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure. Opto-Electron. Adv. (2021). https://doi.org/10.29026/oea.2021.200019

    Article  Google Scholar 

  4. Li, M., Han, S., Teng, B., Li, Y., Liu, Y., Liu, X., Luo, J., Hong, M., Sun, Z.: Minute-scale rapid crystallization of a highly dichroic 2d hybrid perovskite crystal toward efficient polarization-sensitive photodetector. Adv. Opt. Mater. (2020). https://doi.org/10.1002/adom.202000149

    Article  Google Scholar 

  5. Chen, L., Li, Q., Shao, C., Wang, Y., Gong, T., Hu, W.: High-performance and stable perovskite photodetector with mixed 2D/3D perovskite surface passivation layer. Semicond. Sci. Technol. (2021). https://doi.org/10.1088/1361-6641/ac2af1

    Article  Google Scholar 

  6. Chen, S., Zhang, X., Zhao, J., Zhang, Y., Kong, G., Li, Q., Li, N., Yu, Y., Xu, N., Zhang, J., Liu, K., Zhao, Q., Cao, J., Feng, J., Li, X., Qi, J., Yu, D., Li, J., Gao, P.: Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite. Nat. Commun. (2018). https://doi.org/10.1038/s41467-018-07177-y

    Article  Google Scholar 

  7. Smith, I.C., Hoke, E.T., SolisIbarra, D., McGehee, M.D., Karunadasa, H.I.: A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. (2014). https://doi.org/10.1002/anie.201406466

    Article  Google Scholar 

  8. Gan, X., Wang, O., Liu, K., Du, X., Guo, L., Liu, H.: 2D homologous organic-inorganic hybrids as light-absorbers for planer and nanorod-based perovskite solar cells. Sol. Energy Mater. Sol. Cells (2017). https://doi.org/10.1016/j.solmat.2016.12.047

    Article  Google Scholar 

  9. Li, J., Yang, D., Zhu, X.: Pretreating temperature controls on structural, morphological and optical properties of sol-gel ZnO thin films. Mater. Technol. (2017). https://doi.org/10.1080/10667857.2017.1396775

    Article  Google Scholar 

  10. Li, J., Zhu, X., Gu, P., Zhang, X., Li, X., Chen, Y., Yang, D.: Changes in the growth orientation, morphological and optical properties of sol-gel nanocrystalline ZnO thin films coated with different thickness. Mater. Technol. (2018). https://doi.org/10.1080/10667857.2018.1523086

    Article  Google Scholar 

  11. Zhang, Y., Wang, R., Li, Y., Wang, Z., Hu, S., Yan, X., Zhai, Y., Zhang, C., Sheng, C.: Optical properties of two-dimensional perovskite films of (C6H5C2H4NH3)2[PbI4] and (C6H5C2H4NH3)2(CH3NH3)2[Pb3I10]. J. Phys. Chem. Lett. (2019). https://doi.org/10.1021/acs.jpclett.8b03458

    Article  Google Scholar 

  12. Williams, O.F., Guo, Z., Hu, J., Yan, L., You, W., Moran, A.M.: Energy transfer mechanisms in layered 2D perovskites. J Chem Phys (2018). https://doi.org/10.1063/1.5009663

    Article  Google Scholar 

  13. Nie, W., Tsai, H., Asadpour, R., Blancon, J.C., Neukirch, A.J., Gupta, G., Crochet, J.J., Chhowalla, M., Tretiak, S., Alam, M.A., Wang, H.L., Mohite, A.D.: Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science (2015). https://doi.org/10.1126/science.aaa0472

    Article  Google Scholar 

  14. Xue, C., Shi, Y., Zhang, C., Lv, Y., Feng, Y., Tian, W., Jin, S., Ma, T.: Favorable growth of well-crystallized layered hybrid perovskite by combination of thermal and solvent assistance. J. Power Sources. (2019). https://doi.org/10.1016/j.jpowsour.2019.03.037

    Article  Google Scholar 

  15. Chen, Y., Sun, Y., Peng, J., Zhang, W., Su, X., Zheng, K., Pullerits, T., Liang, Z.: Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells. Adv. Energy Mater. (2017). https://doi.org/10.1002/aenm.201700162

    Article  Google Scholar 

  16. Chen, S., Shen, N., Zhang, L., Kong, W., Zhang, L., Cheng, C., Xu, B.: Binary organic spacer-based quasi-two-dimensional perovskites with preferable vertical orientation and efficient charge transport for high-performance planar solar cells. J. Mater. Chem. A. (2019). https://doi.org/10.1039/c8ta12476k

    Article  Google Scholar 

  17. Chen, L.C., Lee, K.L., Wu, W.T., Hsu, C.F., Tseng, Z.L., Sun, X.H., Kao, Y.T.: Effect of different CH3NH3PbI3 morphologies on photovoltaic properties of perovskite solar cells. Nanoscale Res. Lett. (2018). https://doi.org/10.1186/s11671-018-2556-8

    Article  Google Scholar 

  18. Wei, X., Peng, Y., Jing, G., Cui, T.: Planar structured perovskite solar cells by hybrid physical chemical vapor deposition with optimized perovskite film thickness. Jpn. J. Appl. Phys. (2018). https://doi.org/10.7567/jjap.57.052301

    Article  Google Scholar 

  19. Anbarasan, R., Srinivasan, M., Kalyana Sundar, J., Ramasamy, P.: Structural, electronic and optical properties of inorganic perovskite CsPb(1–x)GexI3: a first principle approach. Mater. Technol. (2021). https://doi.org/10.1080/10667857.2021.1915057

    Article  Google Scholar 

  20. Abdelfatah, M., Ismail, W., El-Shafai, N.M., El-Shaer, A.: Effect of thickness, bandgap, and carrier concentration on the basic parameters of Cu2O nanostructures photovoltaics: numerical simulation study. Mater. Technol. (2020). https://doi.org/10.1080/10667857.2020.1793092

    Article  Google Scholar 

  21. Dunlap Shohl, W.A., Zhou, Y., Padture, N.P., Mitzi, D.B.: Synthetic Approaches for Halide Perovskite Thin Films. Chem. Rev. (2019). https://doi.org/10.1021/acs.chemrev.8b00318

    Article  Google Scholar 

  22. Kim, T., Kim, J., Park, J.: All-solution-processed organic-inorganic hybrid perovskite light-emitting diodes under ambient air. Phys. Status Solidi A. (2019). https://doi.org/10.1002/pssa.201900642

    Article  Google Scholar 

  23. Fu, Y., Zheng, W., Wang, X., Hautzinger, M.P., Pan, D., Dang, L., Wright, J.C., Pan, A., Jin, S.: Multicolor heterostructures of two-dimensional layered halide perovskites that show interlayer energy transfer. J. Am. Chem. Soc. (2018). https://doi.org/10.1021/jacs.8b07843

    Article  Google Scholar 

  24. Qing, J., Liu, X., Li, M., Liu, F., Yuan, Z., Tiukalova, E., Yan, Z., Duchamp, M., Chen, S., Wang, Y., Bai, S., Liu, J., Snaith, H.J., Lee, C., Sum, T.C., Gao, F.: Aligned and graded type-ii ruddlesden-popper perovskite films for efficient solar cells. Adv. Energy Mater. (2018). https://doi.org/10.1002/aenm.201800185

    Article  Google Scholar 

  25. Fraccarollo, A., Canti, L., Marchese, L., Cossi, M.: First principles study of 2D layered organohalide tin perovskites. J. Chem. Phys. (2017). https://doi.org/10.1063/1.4985054

    Article  Google Scholar 

  26. Shao, Y., Xiao, Z., Bi, C., Yuan, Y., Huang, J.: Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. (2014). https://doi.org/10.1038/ncomms6784

    Article  Google Scholar 

  27. Sumi, H.Y.: Toyozawa: urbach-martienseen rule and exciton trapped momentarily by lattice vibrations. J. Phys. Soc. Jpn. (1971). https://doi.org/10.1143/jpsj.31.342

    Article  Google Scholar 

  28. Tang, Z., Tanaka, S., Ito, S., Ikeda, S., Taguchi, K., Minemoto, T.: Investigating relation of photovoltaic factors with properties of perovskite films based on various solvents. Nano Energy (2016). https://doi.org/10.1016/j.nanoen.2015.12.013

    Article  Google Scholar 

  29. Hebig, J., Kühn, I., Flohre, J., Kirchartz, T.: Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Lett. (2016). https://doi.org/10.1021/acsenergylett.6b00170

    Article  Google Scholar 

  30. Natsume, Y., Sakata, H., Hirayama, T.: Low-temperature electrical conductivity and optical absorption edge of ZnO films prepared by chemical vapour deposition. Phys. Stat. Sol. (a). (1995). https://doi.org/10.1002/pssa.2211480217

    Article  Google Scholar 

  31. Singh, S., Li, C., Panzer, F., Narasimhan, K.L., Graeser, A., Gujar, T.P., Kohler, A., Thelakkat, M., Huettner, S., Kabra, D.: Effect of thermal and structural disorder on the electronic structure of hybrid perovskite semiconductor CH3NH3PbI3. J. Phys. Chem. Lett. (2016). https://doi.org/10.1021/acs.jpclett.6b01207

    Article  Google Scholar 

  32. De Wolf, S., Holovsky, J., Moon, S.J., Loper, P., Niesen, B., Ledinsky, M., Haug, F.J., Yum, J.H., Ballif, C.: Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. (2014). https://doi.org/10.1021/jz500279b

    Article  Google Scholar 

  33. Klingshirn, C.F.: Semiconductor optics. Springer, Berlin Heidelberg (2012)

    Book  Google Scholar 

  34. Chen, P., Meng, Y., Ahmadi, M., Peng, Q., Gao, C., Xu, L., Shao, M., Xiong, Z., Hu, B.: Charge-transfer versus energy-transfer in quasi-2D perovskite light-emitting diodes. Nano Energy (2018). https://doi.org/10.1016/j.nanoen.2018.06.008

    Article  Google Scholar 

  35. Schmidt, T., Lischka, K., Zulehner, W.: Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B (1992). https://doi.org/10.1103/PhysRevB.45.8989

    Article  Google Scholar 

  36. Shibata, H., Sakai, M., Yamada, A., Matsubara, K., Sakurai, K., Tampo, H., Ishizuka, S., Kim, K., Niki, S.: Excitation-power dependence of free exciton photoluminescence of semiconductors. Jpn. J. Appl. Phys. (2005). https://doi.org/10.1143/jjap.44.6113

    Article  Google Scholar 

  37. Gan, L., He, H., Li, S., Li, J., Ye, Z.: Distinctive excitonic recombination in solution-processed layered organic–inorganic hybrid two-dimensional perovskites. J. Mater. Chem. C. (2016). https://doi.org/10.1039/c6tc03408j

    Article  Google Scholar 

  38. Sebastian, M., Peters, J.A., Stoumpos, C.C., Im, J., Kostina, S.S., Liu, Z., Kanatzidis, M.G., Freeman, A.J., Wessels, B.W.: Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductorsCsPbBr3 and CsPbCl3. Phys. Rev. B. (2015). https://doi.org/10.1103/PhysRevB.92.235210

    Article  Google Scholar 

  39. Ramirez, D., Uribe, J.I., Francaviglia, L., Romero-Gomez, P., Fontcuberta i Morral, A., Jaramillo, F.: Photophysics behind highly luminescent two-dimensional hybrid perovskite (CH3(CH2)2NH3)2(CH3NH3)2Pb3Br 10 thin films. J. Mater. Chem. C (2018). https://doi.org/10.1039/c8tc01582a

    Article  Google Scholar 

  40. Sheng, R., Wen, X., Huang, S., Hao, X., Chen, S., Jiang, Y., Deng, X., Green, M.A., HoBaillie, A.W.: Photoluminescence characterisations of a dynamic aging process of organic-inorganic CH3NH3PbBr3 perovskite. Nanoscale (2016). https://doi.org/10.1039/c5nr07993d

    Article  Google Scholar 

  41. Wen, X., Chen, W., Yang, J., Ou, Q., Yang, T., Zhou, C., Lin, H., Wang, Z., Zhang, Y., Conibeer, G., Bao, Q., Jia, B., Moss, D.J.: Role of surface recombination in halide perovskite nanoplatelets. ACS Appl. Mater. Interfaces. (2018). https://doi.org/10.1021/acsami.8b06931

    Article  Google Scholar 

  42. Manser, J.S., Christians, J.A., Kamat, P.V.: Intriguing optoelectronic properties of metal halide perovskites. Chem Rev (2016). https://doi.org/10.1021/acs.chemrev.6b00136

    Article  Google Scholar 

  43. Saba, M., Cadelano, M., Marongiu, D., Chen, F., Sarritzu, V., Sestu, N., Figus, C., Aresti, M., Piras, R., Lehmann, A.G., Cannas, C., Musinu, A., Quochi, F., Mura, A., Bongiovanni, G.: Correlated electron-hole plasma in organometal perovskites. Nat. Commun. (2014). https://doi.org/10.1038/ncomms6049

    Article  Google Scholar 

  44. Woo, H.C., Choi, J.W., Shin, J., Chin, S.H., Ann, M.H., Lee, C.L.: Temperature-dependent photoluminescence of CH3NH3PbBr3 perovskite quantum dots and bulk counterparts. J. Phys. Chem. Lett. (2018). https://doi.org/10.1021/acs.jpclett.8b01593

    Article  Google Scholar 

  45. Thirumal, K., Chong, W.K., Xie, W., Ganguly, R., Muduli, S.K., Sherburne, M., Asta, M., Mhaisalkar, S., Sum, T.C., Soo, H.S., Mathews, N.: Morphology-independent stable white-light emission from self-assembled two-dimensional perovskites driven by strong exciton-phonon coupling to the organic framework. Chem. Mater. (2017). https://doi.org/10.1021/acs.chemmater.7b00073

    Article  Google Scholar 

  46. Tombe, S., Adam, G., Heilbrunner, H., Apaydin, D.H., Ulbricht, C., Sariciftci, N.S., Arendse, C.J., Iwuoha, E., Scharber, M.C.: Optical and electronic properties of mixed halide (X = I, Cl, Br) methylammonium lead perovskite solar cells. J. Mater. Chem. C. (2017). https://doi.org/10.1039/c6tc04830g

    Article  Google Scholar 

  47. Sun, X., Shi, Z., Li, Y., Lei, L., Li, S., Wu, D., Xu, T., Tian, Y., Li, X.: Effect of CH3NH3I concentration on the physical properties of solution-processed organometal halide perovskite CH3NH3PI3. J. Alloy. Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.02.256

    Article  Google Scholar 

  48. Eames, C., Frost, J.M., Barnes, P.R., O’Regan, B.C., Walsh, A., Islam, M.S.: Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. (2015). https://doi.org/10.1038/ncomms8497

    Article  Google Scholar 

  49. Jagtap, A.M., Khatei, J., Koteswara Rao, K.S.: Exciton-phonon scattering and nonradiative relaxation of excited carriers in hydrothermally synthesized CdTe quantum dots. Phys. Chem. Chem. Phys. (2015). https://doi.org/10.1039/c5cp04654h

    Article  Google Scholar 

  50. Straus, D.B., Hurtado Parra, S., Iotov, N., Gebhardt, J., Rappe, A.M., Subotnik, J.E., Kikkawa, J.M., Kagan, C.R.: Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites. J Am Chem Soc (2016). https://doi.org/10.1021/jacs.6b08175

    Article  Google Scholar 

  51. Chen, B., Yang, M., Priya, S., Zhu, K.: Origin of J-V hysteresis in perovskite solar cells. J. Phys. Chem. Lett. (2016). https://doi.org/10.1021/acs.jpclett.6b00215

    Article  Google Scholar 

  52. Habisreutinger, S.N., Noel, N.K., Snaith, H.J.: hysteresis index: a figure without merit for quantifying hysteresis in perovskite solar cells. ACS Energy Lett. (2018). https://doi.org/10.1021/acsenergylett.8b01627

    Article  Google Scholar 

  53. Rong, Y., Hu, Y., Ravishankar, S., Liu, H., Hou, X., Sheng, Y., Mei, A., Wang, Q., Li, D., Xu, M., Bisquert, J., Han, H.: Tunable hysteresis effect for perovskite solar cells. Energy Environ. Sci. (2017). https://doi.org/10.1039/c7ee02048a

    Article  Google Scholar 

  54. Kato, Y., Ono, L.K., Lee, M.V., Wang, S., Raga, S.R., Qi, Y.: Silver iodide formation in methyl ammonium lead iodide perovskite solar cells with silver top electrodes. Adv. Mater. Interf. (2015). https://doi.org/10.1002/admi.201500195

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the support of National Natural Science Foundation of China (Nos. 62074079, 61627802, 61874056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChuanXiang Sheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 331 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, Z., Liu, T. et al. Effects of Spin-Casting Speed on Solar Cell Performances and Corresponding Films Morphology and Optical Properties Using 2D Perovskite of PEA2MA2Pb3I10. Electron. Mater. Lett. 18, 282–293 (2022). https://doi.org/10.1007/s13391-022-00343-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00343-x

Keywords

Navigation