Skip to main content
Log in

Preparation and Stability of PEGDA/GO Conductive Materials by DLP 3D Printing

  • Original Article - Chemistry and Biomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Stable composites of water-dispersed graphene oxide (GO) and UV-cured acrylic resin, poly (ethylene glycol) diacrylate (PEGDA), were prepared to make printed conductive patterns using a digital light processing (DLP) three-dimensional (3D) printing method. The targeted structures were successfully printed by DLP 3D printing and the electrically conductive properties were obtained by reducing the insulating GO in the composites to reduced GO by chemical and thermal reduction processes. Three basic reduction procedures, pre-thermal, pre-chemical, and post-thermal reduction, were performed to introduce a high conductivity into a printed structure and the lowest resistance was achieved by the pre-thermal reduction in our study. The stability of the printed structures was also evaluated by monitoring the change in resistance with time. The strategy pursued by photopolymerization gives the outstanding features of printed structures for extensive applications in the manufacturing of electronic and sensing devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li, H., Cao, X., Li, B., Zhou, X., Lu, G., Liusman, C., He, Q., Boey, F., Venkatraman, S.S., Zhang, H.: Single-layer graphene oxide sheet: a novel substrate for dip-pen nanolithography. Chem. Commun. 47, 10070–10072 (2011). https://doi.org/10.1039/c1cc12648b

    Article  CAS  Google Scholar 

  2. Worsley, M.A., Pauzauskie, P.J., Olson, T.Y., Biener, J., Satcher, J.H., Baumann, T.F.: Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 132, 14067–14069 (2010). https://doi.org/10.1021/ja1072299

    Article  CAS  Google Scholar 

  3. Wu, Z.S., Ren, W., Gao, L., Zhao, J., Chen, Z., Liu, B., Tang, D., Yu, B., Jiang, C., Cheng, H.M.: Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3, 411–417 (2009). https://doi.org/10.1021/nn900020u

    Article  CAS  Google Scholar 

  4. Lee, Y.R., Raghu, A.V., Jeong, H.M., Kim, B.K.: Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol. Chem. Phys. 210, 1247–1254 (2009). https://doi.org/10.1002/macp.200900157

    Article  CAS  Google Scholar 

  5. Xu, Y., Wang, Y., Liang, J., Huang, Y., Ma, Y., Wan, X., Chen, Y.: A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res. 2, 343–348 (2009). https://doi.org/10.1007/s12274-009-9032-9

    Article  CAS  Google Scholar 

  6. Yoo, B.M., Shin, H.J., Yoon, H.W., Park, H.B.: Graphene and graphene oxide and their uses in barrier polymers. J. Appl. Polym. Sci. 131, 1–23 (2014). https://doi.org/10.1002/app.39628

    Article  CAS  Google Scholar 

  7. Du, Y.C., Huang, L.J., Wang, Y.X., Yang, K., Tang, J.G., Wang, Y., Cheng, M.M., Zhang, Y., Kipper, M.J., Belfiore, L.A., Ranil, W.S.: Recent developments in graphene-based polymer composite membranes: preparation, mass transfer mechanism, and applications. J. Appl. Polym. Sci. 136, 1–20 (2019). https://doi.org/10.1002/app.47761

    Article  CAS  Google Scholar 

  8. Chen, C., Qiu, S., Cui, M., Qin, S., Yan, G., Zhao, H., Wang, L., Xue, Q.: Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene. Carbon N. Y. 114, 356–366 (2017). https://doi.org/10.1016/j.carbon.2016.12.044

    Article  CAS  Google Scholar 

  9. Liang, Y., Wu, D., Feng, X., Müllen, K.: Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv. Mater. 21, 1679–1683 (2009). https://doi.org/10.1002/adma.200803160

    Article  CAS  Google Scholar 

  10. Liu, K., Chen, L., Chen, Y., Wu, J., Zhang, W., Chen, F., Fu, Q., An, B.W., Kim, K., Kim, M., Kim, S.Y., Hur, S.H., Park, J.U.: Direct printing of reduced graphene oxide on planar or highly curved surfaces with high resolutions using electrohydrodynamics. J. Mater. Chem. 11, 8612–8617 (2015). https://doi.org/10.1039/c1jm10717h

    Article  CAS  Google Scholar 

  11. Liu, K., Chen, L., Chen, Y., Wu, J., Zhang, W., Chen, F., Fu, Q.: Preparation of polyester/reduced graphene oxide composites via in situ melt polycondensation and simultaneous thermo-reduction of graphene oxide. J. Mater. Chem. 21, 8612–8617 (2011). https://doi.org/10.1039/c1jm10717h

    Article  CAS  Google Scholar 

  12. Gao, W., Alemany, L.B., Ci, L., Ajayan, P.M.: New insights into the structure and reduction of graphite oxide. Nat. Chem. 1, 403–408 (2009). https://doi.org/10.1038/nchem.281

    Article  CAS  Google Scholar 

  13. Pei, S., Cheng, H.M.: The reduction of graphene oxide. Carbon N. Y. 50, 3210–3228 (2012). https://doi.org/10.1016/j.carbon.2011.11.010

    Article  CAS  Google Scholar 

  14. Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.B.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006). https://doi.org/10.1038/nature04969

    Article  CAS  Google Scholar 

  15. Tkachev, S.V., Buslaev, E.Y., Naumkin, A.V., Kotova, S.L., Laure, I.V., Gubin, S.P.: Reduced graphene oxide. Inorg. Mater. 48, 796–802 (2012). https://doi.org/10.1134/S0020168512080158

    Article  CAS  Google Scholar 

  16. Ye, S., Feng, J.: A new insight into the in situ thermal reduction of graphene oxide dispersed in a polymer matrix. Polym. Chem. 4, 1765–1768 (2013). https://doi.org/10.1039/c3py00019b

    Article  CAS  Google Scholar 

  17. Raslan, A., Saenz del Burgo, L., Ciriza, J., Luis Pedraz, J.: Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine. Int. J. Pharm. 580, 119226 (2020). https://doi.org/10.1016/j.ijpharm.2020.119226

    Article  CAS  Google Scholar 

  18. Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A.C., Ruoff, R.S., Pellegrini, V.: Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science (80-) 347, 1246501 (2015). https://doi.org/10.1126/science.1246501

    Article  CAS  Google Scholar 

  19. Figueroa, N., Dong, H., El Saddik, A.: From sense to print: towards automatic 3D printing from 3D sensing devices. In: Proceedings of 2013 IEEE International Conference on Systems, Man and Cybernetics, SMC 2013, pp. 4897–4904 (2013). https://doi.org/10.1109/SMC.2013.833

  20. Rusling, J.F.: Developing microfluidic sensing devices using 3D printing. ACS Sens. 3, 522–526 (2018). https://doi.org/10.1021/acssensors.8b00079

    Article  CAS  Google Scholar 

  21. Leigh, S.J., Bradley, R.J., Purssell, C.P., Billson, D.R., Hutchins, D.A., Simple, A.: Low-cost conductive composite material for 3D printing of electronic sensors. PLoS ONE 7, 1–6 (2012). https://doi.org/10.1371/journal.pone.0049365

    Article  CAS  Google Scholar 

  22. Zhang, F., Tuck, C., Hague, R., He, Y., Saleh, E., Li, Y., Sturgess, C., Wildman, R.: Inkjet printing of polyimide insulators for the 3D printing of dielectric materials for microelectronic applications. J. Appl. Polym. Sci. 133, 1–11 (2016). https://doi.org/10.1002/app.43361

    Article  CAS  Google Scholar 

  23. Sangermano, M., Marchi, S., Valentini, L., Bon, S.B., Fabbri, P.: Transparent and conductive graphene oxide/poly(ethylene glycol) diacrylate coatings obtained by photopolymerization. Macromol. Mater. Eng. 296, 401–407 (2011). https://doi.org/10.1002/mame.201000372

    Article  CAS  Google Scholar 

  24. Giardi, R., Porro, S., Chiolerio, A., Celasco, E., Sangermano, M.: Inkjet printed acrylic formulations based on UV-reduced graphene oxide nanocomposites. J. Mater. Sci. 48, 1249–1255 (2013). https://doi.org/10.1007/s10853-012-6866-4

    Article  CAS  Google Scholar 

  25. Wu, L., Liu, L., Gao, B., Muñoz-Carpena, R., Zhang, M., Chen, H., Zhou, Z., Wang, H.: Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling. Langmuir 29, 15174–15181 (2013). https://doi.org/10.1021/la404134x

    Article  CAS  Google Scholar 

  26. Maio, A., Fucarino, R., Khatibi, R., Rosselli, S., Bruno, M., Scaffaro, R.: A novel approach to prevent graphene oxide re-aggregation during the melt compounding with polymers. Compos. Sci. Technol. 119, 131–137 (2015). https://doi.org/10.1016/j.compscitech.2015.10.006

    Article  CAS  Google Scholar 

  27. Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K.A., Celik, O., Mastrogiovanni, D., Granozzi, G., Carfunkel, E., Chhowalla, M.: Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19, 2577–2583 (2009). https://doi.org/10.1002/adfm.200900166

    Article  CAS  Google Scholar 

  28. Bourlinos, A.B., Gournis, D., Petridis, D., Szabó, T., Szeri, A., Dékány, I.: Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19, 6050–6055 (2003). https://doi.org/10.1021/la026525h

    Article  CAS  Google Scholar 

  29. Fabbri, P., Montecchi, M., Pasquali, L., Bittolo Bon, S., Sangermano, M., Valentini, L., Foix, D.: In situ graphene oxide reduction during UV-photopolymerization of graphene oxide/acrylic resins mixtures. Polymer (Guildf) 53, 6039–6044 (2012). https://doi.org/10.1016/j.polymer.2012.10.045

    Article  CAS  Google Scholar 

  30. Chiappone, A., Roppolo, I., Naretto, E., Fantino, E., Calignano, F., Sangermano, M., Pirri, F.: Study of graphene oxide-based 3D printable composites: effect of the in situ reduction. Compos. Part B Eng. 124, 9–15 (2017). https://doi.org/10.1016/j.compositesb.2017.05.049

    Article  CAS  Google Scholar 

  31. Wei, Z., Hou, Y., Jiang, C., Liu, H., Chen, X., Zhang, A., Liu, Y.: Graphene enhanced electrical properties of polyethylene blends for high-voltage insulation. Electron. Mater. Lett. 15, 582–594 (2019). https://doi.org/10.1007/s13391-019-00158-3

  32. Balasubramaniyan, R., Pham, V.H., Jang, J., Hur, S.H., Chung, J.S.: A one pot solution blending method for highly conductive poly (methyl methacrylate)-highly reduced graphene nanocomposites. Electron. Mater. Lett. 9, 837–839 (2013). https://doi.org/10.1007/s13391-013-6025-3

  33. Shim, J., Lee, J., Lee, J.S., Son, D.I.: Thermally enhanced Boron Nitride nanotube/reduced Graphene Oxide paper and their application. Electron. Mater. Lett. 17, 500–506 (2021). https://doi.org/10.1007/s13391-021-00304-w

  34. Choi, E., Kim, J., Cui, Y., Choi, K., Gao, Y., Han, S., Pyo, S.G.: Effect of the graphene oxide reduction temperature on supercapacitor performance. Electron. Mater. Lett. 13, 324–329 (2017). https://doi.org/10.1007/s13391-017-1603-4

Download references

Acknowledgements

This work was supported by research fund of the Chungnam National University. This work was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2021R1I1A3052174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Heon Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, M.T.H., Kim, S.Y., Jeong, T.H. et al. Preparation and Stability of PEGDA/GO Conductive Materials by DLP 3D Printing. Electron. Mater. Lett. 18, 275–281 (2022). https://doi.org/10.1007/s13391-022-00338-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00338-8

Keywords

Navigation