Skip to main content
Log in

Impact of Strategic Approaches for Improving the Device Performance of Mesa-shaped Nanoscale Vertical-Channel Thin-Film Transistors Using Atomic-Layer Deposited In–Ga–Zn–O Channel Layers

  • Original Article - Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The effect of two strategic approaches, such as modification of active layer geometry and control of active channel composition, were investigated to improve the on/off ratio (ION/IOFF) and field-effect mobility (µFE) of mesa-shaped nanoscale vertical-channel thin-film-transistor (VTFT). The SiO2 spacer was deposited by using plasma-enhanced chemical vapor deposition and patterned via plasma etching process with Ar/CF4 gas mixtures to form a vertical sidewall, corresponding to a channel length of 170 nm. The gate-stack structures including an In–Ga–Zn–O (IGZO) active layer were deposited by atomic layer deposition with a complete conformality along the spacer sidewall. The ION/IOFF of the IGZO VTFT was significantly enhanced from 6.7 × 103 to 2.1 × 109 by lowering the off-state current when the layout geometry of active layer was properly designed to eliminate the uncontrolled current path between the vertically separated source and drain (S/D) electrodes. Furthermore, the µFE was improved from 0.3 to 2.2 cm2/Vs by enhancing the ION when the In/Ga ratio increased to 1.4 by controlling the In contents within the IGZO active channel. The device also showed robust stabilities under positive/negative gate-bias stresses at 2 MV/cm for 104 s. However, still low a µFE was suggested to originate from two detrimental issues of back-channel effects on spacer sidewall and contact resistance between the channel and S/D electrodes. Alternatively, it was confirmed that the increase in indium contents within the IGZO channel could be a useful way to reduce the contact resistance between the channel and S/D electrodes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hattab, G., Hatzipanayioti, A., Klimova, A., Pfeiffer, M., Klausing, P., Breucha, M., von Bechtolsheim, F., Helmert, J.R., Weitz, J., Pannasch, S.: Investigating the utility of VR for spatial understanding in surgical planning: evaluation of head-mounted to desktop display. Sci. Rep. 11, 1–11 (2021)

    Article  CAS  Google Scholar 

  2. Valentine, A., van der Veen, T., Kenworthy, P., Hassan, G.M., Guzzomi, A.L., Khan, R.N., Male, S.A.: Using head mounted display virtual reality simulations in large engineering classes: operating vs observing. Australas. J. Educ. Technol. 37, 119–136 (2021)

    Article  Google Scholar 

  3. Menin, A., Torchelsen, R., Nedel, L.: An analysis of VR technology used in immersive simulations with a serious game perspective. IEEE Comput. Graph. Appl. 38, 57–73 (2018)

    Article  Google Scholar 

  4. Jang, H.J., Lee, J.Y., Kwak, J.H., Lee, D.H., Park, J.H., Lee, B.H., Noh, Y.Y.: Progress of display performances: AR, VR, QLED, OLED, and TFT. J. Inf. Disp. 20, 1–8 (2019)

    Article  CAS  Google Scholar 

  5. Lee, S.H., Lee, K.H., Nam, Y.Y., Ko, J.B., Yeom, H.I., Hwang, C.S., Park, S.H.K.: Effect of channel defining layer on the vertical oxide TFTs for the application to the ultra high resolution display. SID Int. Symp. Dig. Tech. Pap. 48, 389–392 (2017)

  6. Hwang, C.S., Kim, Y.H., Choi, J.H., Pi, J.E., Kim, G.H., Yang, J.H., Hwang, C.Y., Kim, J.Y., Kim, H.O., Lee, W.J.: Achieving 1µm pixel pitch display for electronic holography. In: Proceedings of the SPIE, Advances in display technologies X, vol. 11304, pp. 113040L. (2020)

  7. Choi, J.H., Yang, J.H., Pi, J.E., Hwang, C.Y., Kim, Y.H., Kim, G.H., Kim, H.O., Hwang, C.S.: The new route for realization of 1-µm-pixel-pitch high-resolution displays. J. Soc. Inf. Disp. 27, 487–496 (2019)

    Article  CAS  Google Scholar 

  8. Choi, J.H., Yang, J.H., Pi, J.E., Hwang, C.Y., Choi, K.H., Kim, H.O., Kwon, O.S., Hwang, C.S.: 1-µm short-channel oxide thin-film transistors with triangular gate spacer. IEEE Electron. Device Lett. 38, 1398–1400 (2017)

    Article  CAS  Google Scholar 

  9. Choi, J.H., Pi, J.E., Hwang, C.Y., Yang, J.H., Kim, G.H., Kim, Y.H., Kim, H.O., Kwon, O.S., Park, E.S., Hwang, C.S.: Toward sub-micron oxide thin‐film transistors for digital holography. J. Soc. Inf. Disp. 25, 126–135 (2017)

    Article  CAS  Google Scholar 

  10. Moradi, M., Fomani, A.A., Nathan, A.: Effect of gate dielectric scaling in nanometer scale vertical thin film transistors. Appl. Phys. Lett. 99, 223503 (2011)

    Article  CAS  Google Scholar 

  11. Nogueira, G.L., Ozório, M.S., Silva, M.M., Morais, R.M., Alves, N.: Middle electrode in a vertical transistor structure using an Sn layer by thermal evaporation. Electron. Mater. Lett. 14, 319 (2018)

    Article  CAS  Google Scholar 

  12. Risch, L., Krautschneider, W.H., Hofmann, F., Schafer, H., Aeugle, T., Rosner, W.: Vertical MOS transistors with 70 nm channel length. IEEE Trans. Electron Devices 43, 1495–1498 (1996)

    Article  CAS  Google Scholar 

  13. Zhao, T., Cao, M., Saraswat, K.C., Plummer, J.D.: A vertical submicron polysilicon thin-film transistor using a low temperature process. IEEE Electron Device Lett. 15, 415–417 (1994)

    Article  CAS  Google Scholar 

  14. Moradi, M., Nathan, A., Haverinen, H.M., Jabbour, G.E.: Vertical transistor with ultrathin silicon nitride gate dielectric. Adv. Mater. 21, 4505–4510 (2009)

    Article  CAS  Google Scholar 

  15. Stutzmann, N., Friend, R.H., Sirringhaus, H.: Self-aligned, vertical-channel, polymer field-effect transistors. Science 299, 1881–1884 (2003)

    Article  CAS  Google Scholar 

  16. Yang, T., Xia, Z., Shi, D., Ouyang, Y., Huo, Z.: Analysis and optimization of threshold voltage variability by polysilicon grain size simulation in 3D NAND flash memory. IEEE J. Electron Devices Soc. 8, 140–144 (2020)

    Article  CAS  Google Scholar 

  17. Jia, X., Jin, L., Hou, W., Wang, Z., Jiang, S., Li, K., Huang, D., Liu, H., Wei, W., Lu, J.: Impact of cycling induced intercell trapped charge on retention charge loss in 3-D NAND flash memory. IEEE J. Electron Devices Soc. 8, 62–66 (2020)

    Article  CAS  Google Scholar 

  18. Zou, X., Jin, L., Yan, L., Zhang, Y., Ai, D., Zhao, C., Xu, F., Li, C., Huo, Z.: The influence of grain boundary interface traps on electrical characteristics of top select gate transistor in 3D NAND flash memory. Solid-State Electron. 153, 67–73 (2019)

    Article  CAS  Google Scholar 

  19. Seo, J.H., Yoon, Y.J., Yu, E.S., Sun, W.J., Shin, H.S., Kang, I.M., Lee, J.H., Cho, S.J.: Fabrication and characterization of a thin-body poly-Si 1T DRAM with charge-trap effect. IEEE Electron Device Lett. 40, 566–569 (2019)

    Article  CAS  Google Scholar 

  20. Jeon, S.H., Benayad, A., Ahn, S.E., Park, S.H., Song, I.H., Kim, C.J., Chung, U.I.: Short channel device performance of amorphous InGaZnO thin film transistor. Appl. Phys. Lett. 99, 082104 (2011)

    Article  CAS  Google Scholar 

  21. Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., Hosono, H.: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004)

    Article  CAS  Google Scholar 

  22. Fortunato, E., Barquinha, P., Martins, R.: Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24, 2945–2986 (2012)

    Article  CAS  Google Scholar 

  23. Nomura, K., Takagi, A., Kamiya, T., Ohta, H., Hirano, M., Hosono, H.: Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn. J. Appl. Phys. 45, 4303 (2006)

    Article  CAS  Google Scholar 

  24. Lee, S.Y.: Comprehensive review on amorphous oxide semiconductor thin film transistor. Trans. Electr. Electron. Mater. 21, 235–248 (2020)

    Article  Google Scholar 

  25. Cho, S.Y., Shin, Y.S., Seok, Y.C., Kim, H.W., Yoon, J.Y., Choi, R., Lee, J.H.: Improving electrical stability of a-InGaZnO thin-film transistors with thermally deposited self-assembled monolayers. Electron. Mater. Lett. 16, 451 (2020)

    Article  CAS  Google Scholar 

  26. Park, J., Kim, H., Choi, P., Jeon, B., Lee, J., Oh, C., Kim, B., Choi, B.: Effect of ALD- and PEALD-grown Al2O3 gate insulators on electrical and stability properties for a-IGZO thin-film transistor. Electron. Mater. Lett. 17, 299 (2021)

    Article  CAS  Google Scholar 

  27. Petti, L., Aguirre, P., Münzenrieder, N., Salvatore, G.A., Zysset, C., Frutiger, A., Büthe, L., Vogt, C., Tröster, G.: Mechanically flexible vertically integrated a-IGZO thin-film transistors with 500 nm channel length fabricated on free standing plastic foil. In: 2013 IEEE International Electron Devices Meet, pp. 11–14 (2013)

  28. Rha, H.S., Jung, J.S., Jung, S.Y., Chung, Y.J., Kim, U.K., Hwang, E.S., Park, B.K., Park, T.J., Choi, J.H., Hwang, C.S.: Vertically integrated submicron amorphous-In2Ga2ZnO7 thin film transistor using a low temperature process. Appl. Phys. Lett. 100, 203510 (2012)

    Article  CAS  Google Scholar 

  29. Kim, Y.M., Kang, H.B., Kim, G.H., Hwang, C.S., Yoon, S.M.: Improvement in device performance of vertical thin-film transistors using atomic layer deposited IGZO channel and polyimide spacer. IEEE Electron Device Lett. 38, 1387–1389 (2017)

    Article  CAS  Google Scholar 

  30. Choi, S.N., Yoon, S.M.: Implementation of In–Ga–Zn–O thin-film transistors with vertical channel structures designed with atomic-layer deposition and silicon spacer steps. Electron. Mater. Lett. 17, 485–492 (2021)

    Article  CAS  Google Scholar 

  31. Leskelä, M., Ritala, M.: Atomic layer deposition chemistry: recent developments and future challenges. Angew. Chem. 42, 5548–5554 (2003)

    Article  CAS  Google Scholar 

  32. Miikkulainen, V., Leskelä, M., Ritala, M., Puurunen, R.L.: Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends. J. Appl. Phys. 113, 2 (2013)

    Article  CAS  Google Scholar 

  33. Kim, H.R., Kim, G.H., Seong, N.J., Choi, K.J., Kim, S.K., Yoon, S.M.: Comparative studies on vertical-channel charge-trap memory thin-film transistors using In–Ga–Zn–O active channels deposited by sputtering and atomic layer depositions. Nanotechnology 31, 435702 (2020)

    Article  CAS  Google Scholar 

  34. Ko, S.B., Seong, N.J., Choi, K.J., Yoon, S.J., Choi, S.N., Yoon, S.M.: Cationic compositional effects on the bias-stress stabilities of thin film transistors using In–Ga–Zn–O channels prepared by atomic layer deposition. J. Mater. Chem. C 7, 6059–6069 (2019)

    Article  CAS  Google Scholar 

  35. Ryoo, H.J., Ahn, H.M., Seong, N.J., Choi, K.J., Hwang, C.S., Chang, S.J., Yoon, S.M.: Device characterization of nanoscale vertical-channel transistors implemented with a mesa-shaped SiO2 spacer and an In–Ga–Zn–O active channel. ACS Appl. Electron. Mater. 3, 4189–4196 (2021)

    Article  CAS  Google Scholar 

  36. Ryoo, H.J., Seong, N.J., Choi, K.J., Yoon, S.M.: Implementation of oxide vertical channel TFTs with sub-150 nm channel length using atomic-layer deposited IGZO active and HfO2 gate insulator. Nanotechnology 32, 255201 (2021)

    Article  CAS  Google Scholar 

  37. Cho, M.H., Kim, M.J., Seul, H., Yun, P.S., Bae, J.U., Park, K.S., Jeong, J.K.: Impact of cation compositions on the performance of thin-film transistors with amorphous indium gallium zinc oxide grown through atomic layer deposition. J. Inf. Disp. 20, 73–80 (2019)

    Article  CAS  Google Scholar 

  38. Cho, M.H., Seol, H.J., On, N.R., Kim, T.K., Yun, P.S., Bae, J.U., Park, K.S., Jeong, J.K.: High performance a-IGZO thin‐film transistors grown by atomic layer deposition: cation combinatorial approach. SID Int. Symp. Dig. Tech. Pap. 50, 1259–1262 (2019)

  39. Illiberi, A., Cobb, B., Sharma, A., Grehl, T., Brongersma, H., Roozeboom, F., Gelinck, G., Poodt, P.: Spatial atmospheric atomic layer deposition of InxGayZnzO for thin film transistors. ACS Appl. Mater. Interfaces 7, 3671–3675 (2015)

    Article  CAS  Google Scholar 

  40. Yoon, S.J., Seong, N.J., Choi, K.J., Shin, W.C., Yoon, S.M.: Investigations on the bias temperature stabilities of oxide thin film transistors using In–Ga–Zn–O channels prepared by atomic layer deposition. RSC Adv. 8, 25014–25020 (2018)

    Article  CAS  Google Scholar 

  41. Yoon, S.M., Seong, N.J., Choi, K.J., Seo, G.H., Shin, W.C.: Effects of deposition temperature on the device characteristics of oxide thin-film transistors using In–Ga–Zn–O active channels prepared by atomic-layer deposition. ACS Appl. Mater. Interfaces 9, 22676–22684 (2017)

    Article  CAS  Google Scholar 

  42. Maeng, W.J., Choi, D.W., Park, J., Park, J.S.: Indium oxide thin film prepared by low temperature atomic layer deposition using liquid precursors and ozone oxidant. J. Alloys Compd. 649, 216–221 (2015)

    Article  CAS  Google Scholar 

  43. Lee, K.H., Lee, S.H., Cho, S.J., Hwang, C.S., Park, S.H.K.: Improving the electrical performance of vertical thin-film transistor by engineering its back-channel interface. Microelectron. Eng. 253, 111676 (2021)

    Article  CAS  Google Scholar 

  44. Hamblen, D.P., Cha-Lin, A.: Angular etching correlations from RIE: application to VLSI fabrication and process modeling. J. Electrochem. Soc. 135, 1816 (1988)

    Article  CAS  Google Scholar 

  45. Kim, J.S., Kim, D.H., Cho, S.I., Lee, S.H., Jeong, W.S., Park, S.H.K.: Channel-shortening effect suppression of a high-mobility self-aligned oxide TFT using trench structure. IEEE Electron Device Lett. 42, 1798–1801 (2021)

    Article  CAS  Google Scholar 

  46. Bae, S.H., Ryoo, H.J., Yang, J.H., Kim, Y.H., Hwang, C.S., Yoon, S.M.: Influence of reduction in effective channel length on device operations of In–Ga–Zn–O thin-film transistors with variations in channel compositions. IEEE Trans. Electron Devices 68, 6159–6165 (2021)

    Article  CAS  Google Scholar 

  47. Kim, W.S., Moon, Y.K., Kim, K.T., Lee, J.H., Park, J.W.: An investigation of contact resistance between metal electrodes and amorphous gallium–indium–zinc oxide (a-GIZO) thin-film transistors. Thin Solid Films 518, 6357–6360 (2010)

    Article  CAS  Google Scholar 

  48. Park, J.C., Kim, C.J., Kim, S.I., Song, I.H., Kim, S.W., Kang, D.H., Lim, H., Yin, H., Jung, R.J., Lee, E.H.: Source/drain series-resistance effects in amorphous gallium–indium zinc-oxide thin film transistors. IEEE Electron Device Lett. 29, 879–881 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Technology Innovation Program (20010402, Development of non-planar TFT structures and processes for ultra high resolution display) funded By the Ministry of Trade, Industry and Energy (MOTIE, Korea), and by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIT) (NRF-2020M3H4A3081897).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Min Yoon.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests or no personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, HM., Kwon, YH., Seong, NJ. et al. Impact of Strategic Approaches for Improving the Device Performance of Mesa-shaped Nanoscale Vertical-Channel Thin-Film Transistors Using Atomic-Layer Deposited In–Ga–Zn–O Channel Layers. Electron. Mater. Lett. 18, 294–303 (2022). https://doi.org/10.1007/s13391-022-00336-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-022-00336-w

Keywords

Navigation