Skip to main content
Log in

Understanding the Behavior of Oxygen Vacancies in an SrFeOx/Nb:SrTiO3 Memristor

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

SrFeOx resistive switching memory devices based on brownmillerite with an oxygen vacancy channel exhibit high durability and fast performance. In particular, a high on/off ratio of > 104 was observed when Nb-doped SrTiO3 was used as the bottom electrode. We studied a SrFeOx/Nb-doped SrTiO3 (111) device with a high on/off ratio, and used in-situ transmission electron microscopy to examine the crystalline structures of the SrFeOx layer in the high and low resistance states. We employed electron energy-loss spectroscopy to determine oxygen redistribution near the interface between the SrFeOx structure and Nb-doped SrTiO3. The resistance increased when oxygen vacancies accumulated at the interface between Nb-doped SrTiO3 and perovskite SrFeO3−δ, and decreased when oxygen ions filled the interface. In contrast, we observed little change in the oxygen concentration at the interface between Nb-doped SrTiO3 and brownmillerite SrFeO3−δ. We show that the resistance of the SrFeOx/Nb-doped SrTiO3 (111) device is mostly concentrated at the interface between the perovskite SrFeO3−δ and Nb-doped SrTiO3, which changes the barrier height.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories - nanoionic mechanisms, prospects, and challenges. Adv. Mater. (2009). https://doi.org/10.1002/adma.200900375

    Article  Google Scholar 

  2. L., Wang C.-H., Yang J., Wen.: Physical principles and current status of emerging non-volatile solid state memories. Electron. Mater. Lett. 11(4), 505–543 (2015). https://doi.org/10.1007/s13391-015-4431-4

    Article  CAS  Google Scholar 

  3. Gupta, V., Kapur, S., Saurabh, S., Grover, A.: Resistive random access memory: a review of device challenges. IETE Tech. Rev. 37, 377 (2019)

    Article  Google Scholar 

  4. Bo, Qu Adnan, Younis Dewei, Chu.: Recent progress in tungsten oxides based memristors and their neuromorphological applications. Electron. Mater. Lett. 12(6), 715–731 (2016). https://doi.org/10.1007/s13391-016-6129-7

    Article  CAS  Google Scholar 

  5. Sawa, A.: Resistive switching in transition metal oxides. Mater. Today (2008). https://doi.org/10.1016/s1369-7021(08)70119-6

    Article  Google Scholar 

  6. Zhang, R., Huang, H., Xia, Q., et al.: Role of oxygen vacancies at the TiO2/HfO2 interface in flexible oxide-based resistive switching memory. Adv. Electro. Mater. 5, 1800833 (2019)

    Article  Google Scholar 

  7. Jeong, H.Y., Kim, S.K., Lee, J.Y., Choi, S.Y.: Role of interface reaction on resistive switching of metal/amorphous TiO2/Al RRAM devices. J. Electrochem. Soc. (2011). https://doi.org/10.1149/1.3622295

    Article  Google Scholar 

  8. Choi, S.-j., Kim, K.-H., Yang, W.-y., Lee, H.-I., Cho, S.: The effect of oxide layer vacancies on switching behavior in oxide resistive devices. Electron. Mater. Lett. 10(1), 57–60 (2014). https://doi.org/10.1007/s13391-013-3001-x

    Article  CAS  Google Scholar 

  9. Miao, F., Joshua Yang, J., Borghetti, J., Medeiros-Ribeiro, G., Stanley Williams, R.: Observation of two resistance switching modes in TiO2 memristive devices electroformed at low current. Nanotechnology 22, 254007 (2011)

    Article  Google Scholar 

  10. Goux, L., Czarnecki, P., Chen, Y.Y., et al.: Evidences of oxygen-mediated resistive-switching mechanism in TiN\HfO2\Pt cells. Appl. Phys. Lett. (2010). https://doi.org/10.1063/1.3527086

    Article  Google Scholar 

  11. De Stefano, F., Houssa, M., Kittl, J.A., Jurczak, M., Afanas’ev, V.V., Stesmans, A.: Semiconducting-like filament formation in TiN/HfO2/TiN resistive switching random access memories. Appl. Phys.Lett. (2012). https://doi.org/10.1063/1.3696672

    Article  Google Scholar 

  12. Sassine, G., De Barbera, S., Najjari, N., Minvielle, M., Dubourdieu, C., Alibart, F.: Interfacial versus filamentary resistive switching in TiO2 and HfO2 devices. J Vacuum Sci & Technology B Nanotech Microelectron: Mater., Process., Measure., and Phenomena. (2016). https://doi.org/10.1116/1.4940129

    Article  Google Scholar 

  13. Kim, W.-G., Rhee, S.-W.: Effect of the top electrode material on the resistive switching of TiO2 thin film. Microelectron. Eng. 87, 98 (2010)

    Article  CAS  Google Scholar 

  14. Choi, S.-J., Yang, W.Y., Kim, K.H., Kyoung, Y.-K, Chung, J.-G., Bae, H.-J., Park, J.-C., Kim, K.-K., Lee, S., Cho, S.: Resistive switching property of copper sulfide and its dependence on electrode. Electron. Mater. Lett. 7(4), 313–317 (2011). https://doi.org/10.1007/s13391-011-0190-z

    Article  CAS  Google Scholar 

  15. Jeen, H., Choi, W.S., Freeland, J.W., Ohta, H., Jung, C.U., Lee, H.N.: Topotactic phase transformation of the brownmillerite SrCoO2.5 to the perovskite SrCoO3-delta. Adv. Mater. 25, 3651 (2013)

    Article  CAS  Google Scholar 

  16. Nemudry, A., Rudolf, P., Schollhorn, R.: Topotactic electrochemical redox reactions of the defect perovskite SrCoO2.5+x. Chem. Mater. 8, 2232 (1996)

    Article  CAS  Google Scholar 

  17. Khare, A., Shin, D., Yoo, T.S., et al.: Topotactic metal-insulator transition in epitaxial SrFeO brownmillerite thin films. Adv Mater (2017). https://doi.org/10.1002/adma.201606566

    Article  Google Scholar 

  18. Auckett, J.E., Lee, W.T., Rule, K.C., Bosak, A., Ling, C.D.: Order, disorder, and dynamics in brownmillerite Sr2Fe2O5. Inorg. Chem. 58, 12317 (2019)

    Article  CAS  Google Scholar 

  19. D’Hondt, H., Abakumov, A.M., Hadermann, J., et al.: Tetrahedral chain order in the Sr2Fe2O5 brownmillerite. Chem. Mater. 20, 7188 (2008)

    Article  CAS  Google Scholar 

  20. Acharya, S.K., Jo, J., Raveendra, N.V., et al.: Brownmillerite thin films as fast ion conductors for ultimate-performance resistance switching memory. Nanoscale 9, 10502 (2017)

    Article  CAS  Google Scholar 

  21. Ferreiro-Vila, E., Blanco-Canosa, S., Lucas-del-Pozo, I., et al.: Room-temperature AFM electric-field-induced topotactic transformation between perovskite and brownmillerite SrFeOx with sub-micrometer spatial resolution. Adv. Funct. Mater.29, 1901984 (2019)

    Article  CAS  Google Scholar 

  22. Nallagatla, V.R., Heisig, T., Baeumer, C., et al.: Topotactic phase transition driving memristive behavior. Adv. Mater. (2019). https://doi.org/10.1002/adma.201903391

    Article  Google Scholar 

  23. Kim, H.G., Nallagatla, V.R., Kwon, D.-H., Jung, C.U., Kim, M.: In situ observations of topotactic phase transitions in a ferrite memristor. J. Appl. Phys. (2020). https://doi.org/10.1063/5.0015902

    Article  Google Scholar 

  24. Nallagatla, V.R., Jung, C.U.: Resistive switching behavior in epitaxial brownmillerite SrFeO2.5/Nb:SrTiO3 heterojunction. Appl. Phys. Lett. (2020). https://doi.org/10.1063/5.0015151

    Article  Google Scholar 

  25. Mitra, C., Meyer, T., Lee, H.N., Reboredo, F.A.: Oxygen diffusion pathways in brownmillerite SrCoO2.5: influence of structure and chemical potential. J. Chem. Phys. 141, 084710 (2014)

    Article  Google Scholar 

  26. Pate, C.M., Hart, J.L., Taheri, M.L.: RapidEELS: machine learning for denoising and classification in rapid acquisition electron energy loss spectroscopy. Sci. Rep. 11, 19515 (2021)

    Article  CAS  Google Scholar 

  27. Zhu, G.Z., Radtke, G., Botton, G.A.: Bonding and structure of a reconstructed (001) surface of SrTiO3 from TEM. Nature 490, 384 (2012)

    Article  CAS  Google Scholar 

  28. Cooper, D., Baeumer, C., Bernier, N., et al.: Anomalous resistance hysteresis in oxide ReRAM: oxygen evolution and reincorporation revealed by in situ TEM. Adv. Mater. (2017). https://doi.org/10.1002/adma.201700212

    Article  Google Scholar 

  29. Park, J., Kwon, D.-H., Park, H., Jung, C.U., Kim, M.: Role of oxygen vacancies in resistive switching in Pt/Nb-doped SrTiO3. Appl Phys Lett (2014). https://doi.org/10.1063/1.4901053

    Article  Google Scholar 

  30. Lee, S., Lee, J.S., Park, J.-B., Koo Kyoung, Y., Lee, M.-J., Won Noh, T.: Anomalous effect due to oxygen vacancy accumulation below the electrode in bipolar resistance switching Pt/Nb:SrTiO3 cells APL. Materials (2014). https://doi.org/10.1063/1.4884215

    Article  Google Scholar 

  31. Hu, Z., Li, Q., Li, M., et al.: Ferroelectric memristor based on Pt/BiFeO3/Nb-doped SrTiO3 heterostructure. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4795145

    Article  Google Scholar 

  32. Wang, Z., Nair, H.P., Correa, G.C., et al.: Epitaxial integration and properties of SrRuO3 on silicon. APL Mater (2018). https://doi.org/10.1063/1.5041940

    Article  Google Scholar 

  33. Wang, L., Yang, Z., Wu, J., et al.: Time- and strain-dependent nanoscale structural degradation in phase change epitaxial strontium ferrite films. NPJ Mater Degradat (2020). https://doi.org/10.1038/s41529-020-0120-3

    Article  Google Scholar 

  34. Tung, R.T.: The physics and chemistry of the schottky barrier height. Appl. Phys. Rev. (2014). https://doi.org/10.1063/1.4858400

    Article  Google Scholar 

  35. Matsubayashi, Y., Nomoto, J., Yamaguchi, I., Tsuchiya, T.: Control of the oxygen deficiency and work function of SrFeO3−δ thin films by excimer laser-assisted metal organic decomposition. CrystEngComm (2020). https://doi.org/10.1039/d0ce00442a

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2017M3D1A1040688). C. U. Jung was supported by Hankuk University of Foreign Studies Research Fund of 2021. V. R. Nallagatla was supported through the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C2006187). G.-S. Park was supported by the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science, ICT & Future Planning (MSIP) (NRF-2019M3F3A1A02071845). TEM and Cs-corrected STEM, EELS works were acquired using Thermofisher TENCAI F20 and ThemisZ installed at the Research Institute of Advanced Materials (RIAM) in Seoul National University. Part of this study has been performed using facilities at IBS Center for Correlated Electron Systems, Seoul National University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deok-Hwang Kwon or Miyoung Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.G., Nallagatla, V.R., Jung, C.U. et al. Understanding the Behavior of Oxygen Vacancies in an SrFeOx/Nb:SrTiO3 Memristor. Electron. Mater. Lett. 18, 168–175 (2022). https://doi.org/10.1007/s13391-021-00334-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-021-00334-4

Keywords

Navigation