Skip to main content
Log in

Relation Between the Local Structure and Solid Solubility of the Layered Material LiMO2 (M = Co, Ni, Fe) in Li2MnO3

  • Original Article - Theory, Characterization and Modeling
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Although low solid solubility and activity of LiFeO2 in xLi2MnO3·(1–x)LiFeO2 limit its practical application, it still has the potential to become a new-generation cathode material without cobalt or nickel for Li-ion batteries. In order to understand the effects of the local structures of different LiMO2 (M = Co, Ni, Fe) layered materials on their solid solubility in Li2MnO3, partial densities of states are calculated to determine the Jahn–Teller distortion in the layered cathode material, and the first-principles calculation method based on density functional theory is used to optimize and compare the local structures of LiCoO2, LiNiO2, LiFeO2, LiMnO2, and Li2MnO3. The degrees of distortion of the transition metal–oxygen (M–O) and lithium–oxygen (Li–O) octahedra in the crystal structure of the material are evaluated. It is clear that the solid solubility of layered materials is related to the bond lengths and degrees of distortion of the M–O and Li–O octahedra. Among them, the similar bond length of LiNiO2 and Li2MnO3 and the high distortion of NiO6 enhance the solid solubility of LiNiO2 in Li2MnO3. Owing to the absence of Jahn–Teller distortion in LiFeO2 and LiCoO2, the FeO6 and CoO6 octahedra are slightly distorted, thereby decreasing the solid solubility of LiMO2 (M = Fe, Co) in Li2MnO3. Understanding the relation between intra-octahedral distortion and solid solubility provides simple and efficient evidence for comparing the solid solubilities of different LiMO2 layered materials in the Li2MnO3 of Li-rich cathode materials. This study can be used as a reference for component design in Li-rich materials.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zeng, X., Li, M., El-Hady, D.A., Alshitari, W., Al-Bogami, A.S., Lu, J., Amine, K.: Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 9(27), 1900161 (2019). https://doi.org/10.1002/aenm.201900161

    Article  CAS  Google Scholar 

  2. Armand, M., Tarascon, J.M.: Building better batteries. Nature 451(7179), 652–657 (2008). https://doi.org/10.1038/451652a

    Article  CAS  Google Scholar 

  3. Schipper, F., Erickson, E.M., Erk, C., Shin, J.Y., Chesneau, F.F., Aurbach, D.: Review-recent advances and remaining challenges for lithium ion battery cathodes. J. Electrochem. Soc. 164(1), A6220–A6228 (2017). https://doi.org/10.1149/2.0461701jes

    Article  CAS  Google Scholar 

  4. Yu, H., Zhou, H.: High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries. J. Phys. Chem. Lett. 4(8), 1268–1280 (2013). https://doi.org/10.1021/jz400032v

    Article  CAS  Google Scholar 

  5. Han, S., Xia, Y., Wei, Z., Qiu, B., Pan, L., Gu, Q., Liu, Z., Guo, Z.: A comparative study on the oxidation state of lattice oxygen among Li1.14Ni0.136Co0.136Mn0.544O2. J. Mater. Chem. A 3(22), 11930–11939 (2015). https://doi.org/10.1039/C5TA02161H

    Article  CAS  Google Scholar 

  6. Luo, K., Roberts, M.R., Hao, R., Guerrini, N., Pickup, D.M., Liu, Y., Edström, K., Guo, J., Chadwick, A.V., Duda, L.C., Bruce, P.G.: Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8(7), 684–691 (2016). https://doi.org/10.1038/nchem.2471

    Article  CAS  Google Scholar 

  7. Kang, S.L., Thackeray, M.M.: Enhancing the rate capability of high capacity xLi2MnO3·(1–x)LiMO2 (M=Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment. Electrochem. Commun. 11(4), 748–751 (2009). https://doi.org/10.1016/j.elecom.2009.01.025

    Article  CAS  Google Scholar 

  8. Hu, S., Pillai, A.S., Liang, G., Pang, W.K., Wang, H., Li, Q., Guo, Z.: Li-Rich layered oxides and their practical challenges: recent progress and perspectives. Electrochem. Energy Rev. 2(2), 277–311 (2019). https://doi.org/10.1007/s41918-019-00032-8

    Article  CAS  Google Scholar 

  9. Nayak, P.K., Erickson, E.M., Schipper, F., Penki, T.R., Munichandraiah, N., Adelhelm, P., Sclar, H., Amalraj, F., Markovsky, B., Aurbach, D.: Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-Rich cathode materials for Li-Ion batteries. Adv. Energy Mater. 8(8), 1702397 (2018). https://doi.org/10.1002/aenm.201702397

    Article  CAS  Google Scholar 

  10. Lu, Z., Chen, Z., Dahn, J.R.: Lack of cation clustering in Li[NixLi1/3-2x/3Mn2/3-x/3]O2 and Li[CrxLi(1–x)/3Mn(2–2x)/3]O2 (0<x<1). Chem. Mater. 15(16), 3214–3220 (2003). https://doi.org/10.1021/cm030194s

    Article  CAS  Google Scholar 

  11. Jarvis, K.A., Deng, Z., Allard, L.F., Manthiram, A., Ferreira, P.G.: Atomic structure of a Lithium-Rich layered oxide material for Lithium-Ion batteries: evidence of a solid solution. Chem. Mater. 23(16), 3614–3621 (2011). https://doi.org/10.1021/cm200831c

    Article  CAS  Google Scholar 

  12. Tabuchi, M., Nabeshima, Y., Shikano, M., Ado, K., Kageyama, H., Tatsumi, K.: Optimizing chemical composition and preparation conditions for Fe-substituted Li2MnO3 positive electrode material. J. Electrochem. Soc. 154(7), A638–A648 (2007). https://doi.org/10.1149/1.2732223

    Article  CAS  Google Scholar 

  13. Kikkawa, J., Akita, T., Tabuchi, M., Shikano, M., Tatsumi, K., Kohyama, M.: Fe-rich and Mn-rich nanodomains in Li1.2Mn0.4Fe0.4O2 positive electrode materials for lithium-ion batteries. Appl. Phys. Lett. 91(5), 054103 (2007). https://doi.org/10.1063/1.2757587

    Article  CAS  Google Scholar 

  14. Boivin, E., Guerrini, N., House, R.A., Lozano, J.G., Jin, L., Rees, G.J., Somerville, G.W., Kuss, C., Roberts, M.R., Bruce, P.G.: The role of Ni and Co in suppressing O-Loss in Li-rich layered cathodes. Adv. Funct. Mater. 32(2), 2003660 (2020). https://doi.org/10.1002/adfm.202003660

    Article  CAS  Google Scholar 

  15. Wu, Y., Pasero, D., McCabe, E.E., Matsushima, Y., West, A.R.: Partial cation-order and early-stage, phase separation in phase W, LixCo1-xO: 0.075≤x≤0.24–0.31. P. Roy. Soc. A-Math. Phy. 465(2106), 1829–1841 (2009). https://doi.org/10.1098/rspa.2008.0489

    Article  CAS  Google Scholar 

  16. Meng, Y.S., Dompablo, M.E.A.: Recent advances in first principles computational research of cathode materials for Lithium-Ion batteries. Acc. Chem. Res. 46(5), 1171–1180 (2013). https://doi.org/10.1021/ar2002396

    Article  CAS  Google Scholar 

  17. Amriou, T., Khelifa, B., Aourag, H., Aouadi, S.M., Mathieu, C.: Ab initio investigation of the Jahn-Teller distortion effect on the stabilizing lithium intercalated compounds. Mater. Chem. Phys. 92(2–3), 499–504 (2005). https://doi.org/10.1016/j.matchemphys.2005.01.061

    Article  CAS  Google Scholar 

  18. Meay, D.D., Marianetti, C., Ven, A.D.V., Ceder, G.: Jahn-Teller mediated ordering in layered LixMO2 compounds. Phys. Rev. B. 63(14), 144107 (2001). https://doi.org/10.1103/PhysRevB.63.144107

    Article  CAS  Google Scholar 

  19. Huang, Z., Zhang, H., Wang, C., Wang, D., Meng, X., Ming, X., Chen, G.: First-principles investigation on extraction of lithium ion from monoclinic LiMnO2. Solid State Sci. 11(1), 271–274 (2009). https://doi.org/10.1016/j.solidstatesciences.2008.06.005

    Article  CAS  Google Scholar 

  20. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59(3), 1758–1775 (1999). https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  21. Anisimov, V.I., Zaanen, J., Andersen, O.K.: Band theory and mott insulators: Hubbard U instead of stoner-I. Phys. Rev. B. 44(3), 943–954 (1991). https://doi.org/10.1103/PhysRevB.44.943

    Article  CAS  Google Scholar 

  22. Anisimov, V.I.: First-principles calculations of the electronic structure and spectra of strongly correlated systems: LDA+U method. Springer Ser. Solid-State Sci. 119, 106–116 (1995)

    CAS  Google Scholar 

  23. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations[J]. Phys. Rev. B Condens. Matter. 13(12), 5188–5192 (1976)

    Article  Google Scholar 

  24. Gao, Y., Wang, X., Ma, J., Wang, Z., Chen, L.: Selecting substituent elements for Li-Rich Mn-based cathode materials by density functional theory (DFT) calculations. Chem. Mater. 27(9), 3456–3461 (2015). https://doi.org/10.1021/acs.chemmater.5b00875

    Article  CAS  Google Scholar 

  25. Li, B., Yan, H., Ma, J., Yu, P., Xia, D., Huang, W., Chu, W., Wu, Z.: Manipulating the electronic structure of Li-Rich manganese-based oxide using polyanions: towards better electrochemical performance. Adv. Funct. Mater. 24(32), 5112–5118 (2014). https://doi.org/10.1002/adfm.201400436

    Article  CAS  Google Scholar 

  26. Robertson, A.D., Bruce, P.G.: Mechanism of electrochemical activity in Li2MnO3. Chem. Mater. 15(10), 1984–1992 (2003). https://doi.org/10.1021/cm030047u

    Article  CAS  Google Scholar 

  27. Kikkawa, J., Akita, T., Tabuchi, M., Shikano, M., Tatsumi, K., Kohyama, M.: Coexistence of layered and cubic rocksalt structures with a common oxygen sublattice in Li1.2Mn0.4Fe0.4O2 particles: a transmission electron microscopy study. J. Appl. Phys. 103(10), 104911 (2008). https://doi.org/10.1063/1.2931002

    Article  CAS  Google Scholar 

  28. Tabuchi, M., Nabeshima, Y., Takeuchi, T., Tatsumi, K., Imaizumi, J., Nitta, Y.: Fe content effects on electrochemical properties of Fe-substituted Li2MnO3 positive electrode material. J. Power Sources 195(3), 834–844 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.059

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Municipal Education Commission (KZ201910005003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Juan Zhao.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, C., Xiao, X., Xing, YR. et al. Relation Between the Local Structure and Solid Solubility of the Layered Material LiMO2 (M = Co, Ni, Fe) in Li2MnO3. Electron. Mater. Lett. 18, 104–111 (2022). https://doi.org/10.1007/s13391-021-00316-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-021-00316-6

Keywords

Navigation