Skip to main content
Log in

Ag-Deposited Porous Silicon as a SERS-Active Substrate for the Sensitive Detection of Catecholamine Neurotransmitters

  • Original Article - Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The sensitive detection of various neurotransmitters is very useful in diagnosing diseases related to the dysfunction of the neurotransmitter system. Surface-enhanced Raman scattering (SERS) is one of the best methods for bio-analyte detection as it provides a molecular fingerprint at a trace concentration level. In this study, Ag-deposited porous silicon (Ag@pSi) was fabricated as a SERS-active substrate via metal-assisted chemical etching and electroless plating methods. Dopamine (DA) and norepinephrine (NE) neurotransmitters were tested as probing analytes. The Ag@pSi substrate demonstrated the sensitive detection of the neurotransmitters (DA and NE) over the wide concentration range (from 10‒6 to 10‒10 M), with a good linearity between the intensity of specific Raman peak and the log-scale concentration. The Ag@pSi substrate also distinguished the individual analytes in a mixture of DA and NE at 10‒8 M, confirming the efficacy of the developed SERS substrate for the selective detection of neurotransmitters.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Si, B., Song, E.: Recent advances in the detection of neurotransmitters. Chemosensors 6(1), 1 (2018). https://doi.org/10.3390/chemosensors6010001

    Article  CAS  Google Scholar 

  2. Banerjee, S., McCracken, S., Hossain, M.F., Slaughter, G.: Electrochemical detection of neurotransmitters. Biosensors (2020). https://doi.org/10.3390/bios10080101

    Article  Google Scholar 

  3. Phung, V.D., Jung, W.S., Nguyen, T.A., Kim, J.H., Lee, S.W.: Reliable and quantitative SERS detection of dopamine levels in human blood plasma using a plasmonic Au/Ag nanocluster substrate. Nanoscale 10(47), 22493–22503 (2018). https://doi.org/10.1039/c8nr06444j

    Article  CAS  Google Scholar 

  4. Lussier, F., Brule, T., Bourque, M.J., Ducrot, C., Trudeau, L.E., Masson, J.F.: Dynamic SERS nanosensor for neurotransmitter sensing near neurons. Faraday Discuss. 205, 387–407 (2017). https://doi.org/10.1039/c7fd00131b

    Article  CAS  Google Scholar 

  5. Choi, J.H., Kim, T.H., El-Said, W.A., Lee, J.H., Yang, L., Conley, B., Choi, J.W., Lee, K.B.: In situ detection of neurotransmitters from stem cell-derived neural interface at the single-cell level via graphene-hybrid SERS nanobiosensing. Nano Lett. 20(10), 7670–7679 (2020). https://doi.org/10.1021/acs.nanolett.0c03205

    Article  CAS  Google Scholar 

  6. Meyyappan, M.: Nano biosensors for neurochemical monitoring. Nano Convergence 2(1), 18 (2015)

    Article  Google Scholar 

  7. Buddhala, C., Loftin, S.K., Kuley, B.M., Cairns, N.J., Campbell, M.C., Perlmutter, J.S., Kotzbauer, P.T.: Dopaminergic, serotonergic, and noradrenergic deficits in Parkinson disease. Ann. Clin. Transl. Neurol. 2(10), 949–959 (2015)

    Article  CAS  Google Scholar 

  8. Valenti, O., Cifelli, P., Gill, K.M., Grace, A.A.: Antipsychotic drugs rapidly induce dopamine neuron depolarization block in a developmental rat model of schizophrenia. J. Neurosci. 31(34), 12330–12338 (2011). https://doi.org/10.1523/JNEUROSCI.2808-11.2011

    Article  CAS  Google Scholar 

  9. Andersen, A.D., Binzer, M., Stenager, E., Gramsbergen, J.B.: Cerebrospinal fluid biomarkers for Parkinson’s disease—a systematic review. Acta Neurol. Scand. 135(1), 34–56 (2017). https://doi.org/10.1111/ane.12590

    Article  CAS  Google Scholar 

  10. Li, K.Y., Chu, P.Y., Pickett, K.A.: The effect of dopaminergic medication on joint kinematics during haptic movements in individuals with Parkinson’s disease. Behav. Neurol. 2017, 2358386 (2017). https://doi.org/10.1155/2017/2358386

    Article  Google Scholar 

  11. Wierzbicka, E., Szultka-Młyńska, M., Buszewski, B., Sulka, G.D.: Epinephrine sensing at nanostructured Au electrode and determination its oxidative metabolism. Sens. Actuators B Chem. 237, 206–215 (2016). https://doi.org/10.1016/j.snb.2016.06.073

    Article  CAS  Google Scholar 

  12. Saraf, N., Bosak, A., Willenberg, A., Das, S., Willenberg, B.J., Seal, S.: Colorimetric detection of epinephrine using an optimized paper-based aptasensor. RSC Adv. 7(77), 49133–49143 (2017). https://doi.org/10.1039/c7ra10272k

    Article  CAS  Google Scholar 

  13. Kim, C.H., Leung, A., Huh, Y.H., Yang, E., Kim, D.J., Leblanc, P., Ryu, H., Kim, K., Kim, D.W., Garland, E.M., Raj, S.R., Biaggioni, I., Robertson, D., Kim, K.S.: Norepinephrine deficiency is caused by combined abnormal mRNA processing and defective protein trafficking of dopamine beta-hydroxylase. J. Biol. Chem. 286(11), 9196–9204 (2011). https://doi.org/10.1074/jbc.M110.192351

    Article  CAS  Google Scholar 

  14. Godoy-Reyes, T.M., Costero, A.M., Gaviña, P., Martínez-Máñez, R., Sancenón, F.: A colorimetric probe for the selective detection of norepinephrine based on a double molecular recognition with functionalized gold nanoparticles. ACS Appl. Nano Mater. 2(3), 1367–1373 (2019). https://doi.org/10.1021/acsanm.8b02254

    Article  CAS  Google Scholar 

  15. Holm, T.H., Isaksen, T.J., Lykke-Hartmann, K.: HPLC neurotransmitter analysis. Methods Mol. Biol. 1377, 333–340 (2016). https://doi.org/10.1007/978-1-4939-3179-8_29

    Article  CAS  Google Scholar 

  16. Sanli, N., Tague, S.E., Lunte, C.: Analysis of amino acid neurotransmitters from rat and mouse spinal cords by liquid chromatography with fluorescence detection. J. Pharm. Biomed. Anal. 107, 217–222 (2015). https://doi.org/10.1016/j.jpba.2014.12.024

    Article  CAS  Google Scholar 

  17. Zhang, F., Ma, X.L., Wang, Y.X., Su, R.R., He, C., Tian, K., Liu, Y.Q.: Detection of four different amino acid neurotransmitters in cultured rat neurons and the culture medium by precolumn derivatization high-performance liquid chromatography. NeuroReport 27(7), 495–500 (2016). https://doi.org/10.1097/WNR.0000000000000568

    Article  CAS  Google Scholar 

  18. Park, H., Paeng, I.R.: Development of direct competitive enzyme-linked aptamer assay for determination of dopamine in serum. Anal. Chim. Acta 685(1), 65–73 (2011). https://doi.org/10.1016/j.aca.2010.11.010

    Article  CAS  Google Scholar 

  19. Nichkova, M.I., Huisman, H., Wynveen, P.M., Marc, D.T., Olson, K.L., Kellermann, G.H.: Evaluation of a novel ELISA for serotonin: urinary serotonin as a potential biomarker for depression. Anal. Bioanal. Chem. 402(4), 1593–1600 (2012). https://doi.org/10.1007/s00216-011-5583-1

    Article  CAS  Google Scholar 

  20. Bucher, E.S., Wightman, R.M.: Electrochemical analysis of neurotransmitters. Annu. Rev. Anal. Chem. (Palo Alto Calif) 8, 239–261 (2015). https://doi.org/10.1146/annurev-anchem-071114-040426

    Article  CAS  Google Scholar 

  21. Li, N., Lu, Y., Li, S., Zhang, Q., Wu, J., Jiang, J., Liu, G.L., Liu, Q.: Monitoring the electrochemical responses of neurotransmitters through localized surface plasmon resonance using nanohole array. Biosens. Bioelectron. 93, 241–249 (2017). https://doi.org/10.1016/j.bios.2016.08.105

    Article  CAS  Google Scholar 

  22. Ribeiro, J.A., Fernandes, P.M.V., Pereira, C.M., Silva, F.: Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: a review. Talanta 160, 653–679 (2016). https://doi.org/10.1016/j.talanta.2016.06.066

    Article  CAS  Google Scholar 

  23. Jafarinejad, S., Ghazi-Khansari, M., Ghasemi, F., Sasanpour, P., Hormozi-Nezhad, M.R.: Colorimetric fingerprints of gold nanorods for discriminating catecholamine neurotransmitters in urine samples. Sci. Rep. 7(1), 8266 (2017)

    Article  Google Scholar 

  24. Godoy-Reyes, T.M., Llopis-Lorente, A., Costero, A.M., Sancenón, F., Gaviña, P., Martínez-Máñez, R.: Selective and sensitive colorimetric detection of the neurotransmitter serotonin based on the aggregation of bifunctionalised gold nanoparticles. Sens. Actuators B Chem. 258, 829–835 (2018). https://doi.org/10.1016/j.snb.2017.11.181

    Article  CAS  Google Scholar 

  25. Kim, M.S., Kim, D.H., Lee, J., Ahn, H.T., Kim, M.I., Lee, J.: Self color-changing ordered mesoporous ceria for reagent-free colorimetric biosensing. Nanoscale 12(3), 1419–1424 (2020). https://doi.org/10.1039/c9nr09182c

    Article  CAS  Google Scholar 

  26. Wang, P., Xia, M., Liang, O., Sun, K., Cipriano, A.F., Schroeder, T., Liu, H., Xie, Y.H.: Label-free SERS Selective detection of dopamine and serotonin using graphene-Au nanopyramid heterostructure. Anal. Chem. 87(20), 10255–10261 (2015). https://doi.org/10.1021/acs.analchem.5b01560

    Article  CAS  Google Scholar 

  27. Phung, V.-D., Jung, W.-S., Kim, J.-H., Lee, S.-W.: Gold nanostructures electrodeposited on graphene oxide-modified indium tin oxide glass as a surface-enhanced Raman scattering-active substrate for ultrasensitive detection of dopamine neurotransmitter. Jpn. J. Appl. Phys. 57(8S2), 08PF02 (2018)

    Article  Google Scholar 

  28. Phung, V.D., Kook, J.K., Koh, D.Y., Lee, S.W.: Hierarchical Au nanoclusters electrodeposited on amine-terminated ITO glass as a SERS-active substrate for the reliable and sensitive detection of serotonin in a Tris-HCl buffer solution. Dalton Trans. 48(42), 16026–16033 (2019). https://doi.org/10.1039/c9dt03269j

    Article  CAS  Google Scholar 

  29. Pradhan, T., Jung, H.S., Jang, J.H., Kim, T.W., Kang, C., Kim, J.S.: Chemical sensing of neurotransmitters. Chem. Soc. Rev. 43(13), 4684–4713 (2014). https://doi.org/10.1039/c3cs60477b

    Article  CAS  Google Scholar 

  30. Rasheed, P.A., Lee, J.-S.: Recent advances in optical detection of dopamine using nanomaterials. Microchim. Acta 184(5), 1239–1266 (2017). https://doi.org/10.1007/s00604-017-2183-6

    Article  CAS  Google Scholar 

  31. Adcock, J.L., Barnett, N.W., Costin, J.W., Francis, P.S., Lewis, S.W.: Determination of selected neurotransmitter metabolites using monolithic column chromatography coupled with chemiluminescence detection. Talanta 67(3), 585–589 (2005). https://doi.org/10.1016/j.talanta.2005.03.007

    Article  CAS  Google Scholar 

  32. Zhou, X., Qin, M., Zhu, J., Wang, C., Zhu, G., Wang, H., Yang, L.: Rapid and sensitive surface-enhanced resonance Raman spectroscopy detection for norepinephrine in biofluids. J. Raman Spectrosc. 50(3), 314–321 (2018). https://doi.org/10.1002/jrs.5519

    Article  CAS  Google Scholar 

  33. Moore, T.J., Moody, A.S., Payne, T.D., Sarabia, G.M., Daniel, A.R., Sharma, B.: In vitro and in vivo SERS biosensing for disease diagnosis. Biosensors (2018). https://doi.org/10.3390/bios8020046

    Article  Google Scholar 

  34. Moody, A.S., Sharma, B.: Multi-metal, multi-wavelength surface-enhanced Raman spectroscopy detection of neurotransmitters. ACS Chem. Neurosci. 9(6), 1380–1387 (2018). https://doi.org/10.1021/acschemneuro.8b00020

    Article  CAS  Google Scholar 

  35. Sharma, B., Frontiera, R.R., Henry, A.-I., Ringe, E., Van Duyne, R.P.: SERS: materials, applications, and the future. Mater. Today 15(1–2), 16–25 (2012). https://doi.org/10.1016/s1369-7021(12)70017-2

    Article  CAS  Google Scholar 

  36. Zhang, K., Liu, Y., Wang, Y., Zhang, R., Liu, J., Wei, J., Qian, H., Qian, K., Chen, R., Liu, B.: Quantitative SERS detection of dopamine in cerebrospinal fluid by dual-recognition-induced hot spot generation. ACS Appl. Mater. Interfaces. 10(18), 15388–15394 (2018). https://doi.org/10.1021/acsami.8b01063

    Article  CAS  Google Scholar 

  37. Cao, X., Qin, M., Li, P., Zhou, B., Tang, X., Ge, M., Yang, L., Liu, J.: Probing catecholamine neurotransmitters based on iron-coordination surface-enhanced resonance Raman spectroscopy label. Sens. Actuators B Chem. 268, 350–358 (2018). https://doi.org/10.1016/j.snb.2018.04.117

    Article  CAS  Google Scholar 

  38. Barbillon, G.: Fabrication and SERS performances of metal/Si and Metal/ZnO nanosensors: a review. Coatings 9(2), 86 (2019). https://doi.org/10.3390/coatings9020086

    Article  CAS  Google Scholar 

  39. Shende, C., Smith, W., Brouillette, C., Farquharson, S.: Drug stability analysis by Raman spectroscopy. Pharmaceutics 6(4), 651–662 (2014). https://doi.org/10.3390/pharmaceutics6040651

    Article  Google Scholar 

  40. Lee, N.S., Hsieh, Y.Z., Paisley, R.F., Morris, M.D.: Surface-enhanced Raman spectroscopy of the catecholamine neurotransmitters and related compounds. Anal. Chem. 60(5), 442–446 (2002). https://doi.org/10.1021/ac00156a014

    Article  Google Scholar 

  41. Schalk, R., Heintz, A., Braun, F., Iacono, G., Rädle, M., Gretz, N., Methner, F.-J., Beuermann, T.: Comparison of Raman and mid-infrared spectroscopy for real-time monitoring of yeast fermentations: a proof-of-concept for multi-channel photometric sensors. Appl. Sci. 9(12), 2472 (2019). https://doi.org/10.3390/app9122472

    Article  CAS  Google Scholar 

  42. Boca, S., Rugina, D., Pintea, A., Leopold, N., Astilean, S.: Designing gold nanoparticle-ensembles as surface enhanced Raman scattering tags inside human retinal cells. J. Nanotechnol. 2012, 1–10 (2012). https://doi.org/10.1155/2012/961216

    Article  CAS  Google Scholar 

  43. Naim, N.M., Abdullah, H., Hamid, A.A.: Influence of Ag and Pd contents on the properties of PANI–Ag–Pd nanocomposite thin films and its performance as electrochemical sensor for E. coli detection. Electron. Mater. Lett. 15(1), 70–79 (2019)

    Article  CAS  Google Scholar 

  44. Vishnoi, R., Gupta, S., Sharma, G.D., Singhal, R.: Large tuning of surface plasmon resonance of Au–Fullerene nanocomposite. Electron. Mater. Lett. 15(1), 111–118 (2019)

    Article  CAS  Google Scholar 

  45. Suh, J.M., Shim, Y.-S., Kwon, K.C., Jeon, J.-M., Lee, T.H., Shokouhimehr, M., Jang, H.W.: Pd- and Au-Decorated MoS2 gas sensors for enhanced selectivity. Electron. Mater. Lett. 15(3), 368–376 (2019)

    Article  CAS  Google Scholar 

  46. Ta, Q.T.H., Namgung, G., Noh, J.-S.: Synthesis of Ag@rGO/g-C3N4 layered structures and their application to toxic gas sensors: Effect of Ag nanoparticles. Electron. Mater. Lett. 15(6), 750–759 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Gachon University research fund of 2020 (GCU-202002730001), and also supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry, and Energy (MOTIE) of the Republic of Korea [Grant No. 20194030202440].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Viet-Duc Phung or Sang-Wha Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, VT., Gwon, Y., Phung, VD. et al. Ag-Deposited Porous Silicon as a SERS-Active Substrate for the Sensitive Detection of Catecholamine Neurotransmitters. Electron. Mater. Lett. 17, 292–298 (2021). https://doi.org/10.1007/s13391-021-00281-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-021-00281-0

Keywords

Navigation